MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

DEPARTMENT OF DEFENSE WASHINGTON DC 20301

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

1. This standardization handbook was developed by the Department of Defense with the assistance of the military departments, federal agencies, and industry.
2. Every effort has been made to reflect the latest information on reliability prediction procedures. It is the intent to review this handbook periodically to ensure its completeness and currency.
3. Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Rome Laboratory, AFSC, ATTN: ERSS, Griffiss Air Force Base, New York 13441-5700, by using the self-addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.
SECTION 1: SCOPE
1.1 Purpose 1-1
1.2 Application 1-1
1.3 Computerized Reliability Prediction 1-1
SECTION 2: REFERENCE DOCUUMENTS 2-1
SECTION 3: INTRODUCTION
3.1 Reliability Engineering 3-1
3.2 The Role of Reliability Prediction. 3-1
3.3 Liminations of Reliability Predictions. 3-2
3.4 Part Stress Analysis Prediction 3-2
SECTION A: RELIABILITY ANALYSIS EVALUATION 4-1
SECTION 5: MCROCIRCUITS, MTRODUCTION E-1
5.1 Gatellogic Arrays and Microprocessors 5-3
5.2 Memories 5-4
5.3 VHSICNHSIC Like 5-7
5.4 GaAs MMIC and Digital Devices 5-8
5.5 Hybrids 5-9
5.6 SAW Devices 5-10
5.7 Magnetic Bubble Memories 5-11
$5.8 \quad \pi_{T}$ Table ior All 5-13
$5.9 \quad \mathrm{C}_{2}$ Table for All 5-14
$5.10 \quad \pi_{E}, \pi_{L}$ and π_{Q} Tabies for Ali 5-15
$5.11 T_{j}$ Determination, (Al Except Hybrids) 5-17
$5.12 \mathrm{~T}_{\mathrm{J}}$ Determination, (For Hybrids) 5-18
5.13 Examples 5-20
SECTION 6: DISCRETE SEMICONDUCTORS
6.0 Discrete Semiconductors, Introduction 6-1
6.1 Diodes, Low Frequency 6-2
6.2 Diodes, High Frequency (Microwave, RF) 6-4
6.3 Trans!stors, Low Frecurency, Bipolar 6-6
6.4 Transistors, Low Frequency, Si FET. 6-8
6.5 Transistors, Unijunction. 6-9
6.6 Transistors, Low Noise, High Frequency, Bipolar 6-10
6.7 Transistors, High Power, High Frequency, Blpolar 6-12
6.8 Transistors, High Frequency, GaAs FET 6-14
6.9 Transistors, High Frequency, Si FET 6-16
6.10 Thyristore and SCFs 6-17
6.11 Optoelectronics, Detectors, Isolators, Emitters 6-19
6.12 Optoelectronics, Alphanumeric Displays 6-20
6.13 Optoelectronics, Laser Diode 6-21
$6.14 T_{J}$ Determination 6-23
6.15 Example 6-25

CONTENTS

SECTION 7: TUBES
7.1 All Types Except TWT and Magnetron 7-1
7.2 Traveling Wave 7-3
7.3 Magnetron 7-4
SECTION 8: LASERS
8.0 Introduction 8-1
8.1 Helium and Argon 8-2
8.2 Carbon Dioxide, Sealed 8-3
8.3 Carbon Dioxide, Flowing 8-4
8.4 Solid State, ND:YAG and Ruby Rod 8-5
SECTION 9: RESISTORS
9.0 introduction 9-1
9.1 Fixed, Composition (RCR, RC) 9-2
9.2 Fixed, Film (RLR, RL, RN (R,C, or N). RN) 9-3
9.3 Fbred, Fitm, Power (RD) 9-5
9.4 Network, Fixed, Film (RZ) 9-6
9.5 Fixed, Wirewound (RBR, RB) 9-7
9.6 Fixed, Wirewound, Power (RWR, RW) 9-8
9.7 Fixed, Wirewound, Power, Chassis Mounted (RER, RE) 9-10
9.8 Thermistor (RTH) 9-12
9.9 Variable, Wirewound (RTR, RT) 9-13
9.10 Variable, Wirewound, Precision (RR) $9-15$
9.11 Variable, Wirewound, Semiprecision (RA, RK) 9-17
9.12 Variable, Wirewound, Power (RP) 9-19
9.13 Variable, Nonwirewound (RJ, RJR) 9-21
9.14 Variable, Composition (RV) 9-23
9.15 Variable, Nonwirowound, Fitm and Precision (RQ, RVC) 9-25
9.16 Calculation of Stress Ratio for Potentiometers 9-27
9.17 Example 9-29
SECTION 10: CAPACITORS
10.1 Fixed, Paper, By-Pass (CP, CA) 10-1
10.2 Fixed, Feed-Through (CZR, CZ) 10-3
10.3 Fixed, Paper and Plastic Film (CPV, CQR and CQ) 10-5
10.4 Fixed, Metallized Paper, Paper-Plastic and Plastic (CH, CHR) 10-7
10.5 Fixed, Plastic and Metallized Plastic 10-9
10.6 Fixed, Super-Metallized Plastic (CRH) 10-11
10.7 Fbxed, MICA (CM, CMR) 10-12
10.8 Fixed, MICA, Button (CB) 10-14
10.9 Fixed, Glass (CY, CYR) 10-16
10.10 Fixed, Ceramic, General Purpose (CK, CKR) $10 \cdot 18$
10.11 Fixed, Ceramic, Temperature Compensating and Chip (CCR and CC, CDR) 10-20
10.12 Fixed, Electrolytic, Tantalum, Solid (CSR) 10-21
10.13 Fixed, Electroytic, Tamalum, Non-Solid (CL, CLR) 10-22
10.14 Fixed, Electrolytic, Aluminum (CUR and CU) 10-24
10.15 Fixed, Electrolytic (Dry), Aluminum (CE). 10-26
10.16 Variable, Ceramic (CV) 10-27
10.17 Variable, Piston Type (PC) 10-28
10.18 Variable, Air Trimmer (CT) 10-29
10.19 Variable and Fixed, Gas or Vacuum (CG) 10-30
10.20 Example 10-32

MIL-HDBK-217F

CONTENTS

SECTION 11: INDUCTIVE DEVICES
11.1 Transformers 11-1
11.2 Cols $11-3$
11.3 Determination of Hot Spot Temperature 11-5
SECTION 12: ROTATING DEVICES
12.1 Motors 12-1
12.2 Synchros and Resolvers 12-3
12.3 Elapsed Time Mieters 12-4
12.4 Example. 12-5
SECTION 13: RELAYS
13.1 Mechanical 13-1
13.2 Soltd State and Tims Dolay 13-3
SECTION 14: SWITCHES
14.1 Toggle or Pushbutton 14-1
14.2 Basic Sensitive 14-2
14.3 Rotary 14-3
14.4 Thumbwheel. 14-4
14.5 Circuit Breakers $14-5$
SECTION 15: CONNECTORS
15.1 General (Except Printed Circuit Board) 15-1
15.2 Printed Circuit Board $15 \cdot 4$
15.3 Integrated Circuit Sockets 15-6
SECTION 16: INTERCONNECTION ASSEMBLIES
16.1 interconnection Assernblies with Plated Through Holes 16-1
SECTION 17: CONNECTIONS
17.1 Connections 17-1
SECTION 18: METERS
i6.1 Meters, Pañel 18-1
SECTION 19: QUARTZ CRYSTALS
19.1 Quartz Crystais 19-1
SECTION 20: LAMPS
20.1 Lamps. 20-1
SECTION 21: ELECTRONIC FILTERS
21.1 Electmonic Fiters, Non-Tunable. 21-1
SECTION 22: FUSES
22.1 Fuses 22-1
SECTION 23: MISCELLANEOUS PARTS
23.1 Miscellaneous Parts 23-1
APPENDIX A: PARTS COUNT RELAABILITY PREDICTION A-1
APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL) B-1
APPENDIX C: BIBLIOGFAPHY C-1

CONTENTS

LIST OF TABLES

Table 3-1: \quad Parts with Multi-Level Quality Specifications. 3-3
Table 3-2: \quad Environmental Symbol and Description 3-4
Table 4-1: Reliability Analysis Checklist 4-1
Table 6-1: Default Case Temperatures for All Environments (${ }^{\circ} \mathrm{C}$) 6-23
Table 6-2: Approximate Thermal Resistance for Semiconductor Devices in Various Package Sizes 6-24
LIST OF FIGURES
Figure 5-1: Cross Sectional View of a Hybrid with a Single Multi-Layered Substrate 5-18
Figure 8-1: Examples of Active Optical Surtaces 8-1
Figure 9-1: MIL-R-39008 Derating Curve 9-1

MIL-HDBK-217F

This revision to MIL-HDBK-217 provides the following changes based upon recently completed studies (see Ref. 30 and 32 listed in Appendix C):

1. New failure rate prediction models are provided for the following nine major classes of microcircuits:

- Monolithic Bipolar Digital and Linear Gate/Logic Array Devices
- Monolithic MOS Digital and Linear Gate/Logic Array Devices
- Monolithic Bipolar and MOS Digital Microprocessor Devices (Including Controllers)
- Monolithic Blpolar and MOS Memory Devices
- Monolithic GaAs Digital Devices
- Monolithic GaAs MMIC Devices
- Hybrid Microcircuits
- Magnetic Bubble Memories
- Surface Acoustic Wave Devices

This revision provides new prediction models for bipolar and MOS microcircuits with gate counts up to 60,000 , linear microcircuits with up to 3000 transistors, bipolar and MOS digital microprocessor and coprocessors up to 32 bits, memory devices with up to 1 million bits, GaAs monolithic microwave integrated circuits (MMICs) with up to 1,000 active elements, and GaAs digital ICs with up to 10,000 transistors. The C_{1} factors have been extensively revised to reflect new technology devices with improved reliability, and the activation energies representing the temperature sensitivity of the dice (π_{T}) have been changed for MOS devices and for memories. The C_{2} factor remains unchanged from the previous Handbook version, but inctudes pin grid arrays and surface mount packages using the same model as hermetic, solder-sealed dual in-line packages. New vahues have been included for the quality factor (π_{Q}), the learning factor (π_{L}), and the environmental factor (π_{E}). The model for hybrid microcircuits has been revised to be simpler to use, to delete the temperature dependence of the seal and interconnect failure rate contributions, and to provide a method of calculating chip junction temperatures.
2. A new model for Very High Speed Integrated Circuits (VHSICNHSIC Like) and Very Large Scale integration (VLSI) devices (gate counts above 60,000).
3. The reformatting of the entire handbook to make it easier to use.
4. A reduction in the number of environmental factors (π_{E}) from 27 to 14.
5. A revised failure rate model for Network Resistors.
6. Revised models for TWTs and Klystrons based on data supplied by the Electronic Industries Association Microwave Tube Division.

MIL-HDBK-217F
1.1 Purpose - The purpose of this handbook is to establish and maintain consistent and uniform methods for estimating the inherent reliability (i.e., the reliability of a mature design) of military electronic equipment and systems. It provides a common basts tor rellability predictions curing acquisition programs for military electronic systems and equipment. It atso establishes a common basis for comparing and evaluating reliability predictions of related or compethive designs. The handoook is intended to be used as a tool to increase the reliablity of the equipment being designed.
1.2 Appllcation - This handbook contains two methods of rellability prediction - -Part Stress Analysis" in Sections 5 through 23 and "Parts Count" in Appendix A. These methods vary in degree of information needed to apply them. The Part Stress Analysis Method requires a greater amount of detailed information and is applicable during the later design phase when actual hardware and circults are being designed. The Parts Count Method requires less information, generally part quandities, quality level, and the application environment. This method is applicable during the earty design phase and during proposal formulation. In general, the Parts Count Method will usually result in a more conservative estimate (i.e., higher faiture rate) of system reltabinty than the Parts Stress Method.
1.3 Computerized Rollablity Prediction - Rome Laboratory - ORACLE is a computer program developed to aid in applying the part stress analysis procedure of MIL-HDBK-217. Based on environmental use characteristics, piece part count, thermal and electrical stresses, subsystem repair rates and system configuration, the program calculates piece part, assembly and subassembly failure rates. It also flags overstressed parts, allows the user to perform tradeoff analyses and provides system mean-time-to-failure and availability. The ORACLE computer program software (available in both VAX and IBM compatible PC versions) is available at replacement tape/disc cost to all DoD organizations, and to contractors for application on specific DoD contracts as government fumished property (GFP). A statement of terms and conditions may be obtained upon written request to: Rome Laboratory/ERSR, Grffiss AFB, NY 13441-5700.

This handbook cites some specifications which have been cancelled or which describe devices that are not to be used for new design. This information is necessary because some of these devices are used in so-called "off-the-sherr equipment which the Department of Defense purchases. The documents cited in this section are for guidance and information.

SPECIFICATION	SECTION *	time
Mn-C-5	10.7	Capmenors, Fired, Mica-Dieloctric, General Spocification for
MIL-R-11	9.1	Presintor, Fixed, Composition (Insutated) General Specitication for
MIL-R-19	9.11	Resktor, Variable, Wirewound (Low Operating Temperature) General Spectifcation for
MHL-C-20	10.11	Ceppecior. Foxed, Ceramic Diolectric (Ternperature Compeneming) Established and Nonestablished Reliability, General Specification for
MIL-R-22	9.12	Resistor, Wirowound, Power Type. General Specification for
MIL-C-25	10.1	Capectior, Fixed, Paper-Dielectric, Direct Current (Hermeticalty Sealed in Metal Cases), General Specification for
MIL-R-26	9.6	Resistor, Fixed, Wirewound (Power Type), General Specification for
AIIL $=$ T -27	11.1	Transionmor and induator (Aludio, Power, High Power, Higi Power Pulse). General Specification for
M14-C-62	10.15	Capactior, Fixed Electrolyic (DC. Aluminum. Dry Electrolyte, Polarized), General Specification for
MiL-C-81	10.16	Capacitor, Variable, Coramic Dielectric (Trimmer), General Specification for
MIL-C-92	10.18	Capactior, Variable, Air Dielectric (Trimmer). General Specitication for
MIL-R-93	9.5	Resistor, Fixed, Wirowound (Accurate), General Specification for
MIL-R-94	9.14	Resistor, Variable, Composition, General Specitication for
MIL-V-95	23.1	Vibrator, Interrupter and Sell-Rectitying. General Specification for
w-111!	20.1	
W-C-375	14.5	Cinovit Breaker, Molded Case, Branch Circuit and Service
W-F-1726	22.1	Fuse, Cartridge, Class H (This covers renewable and nonrenewable)
W-F-1ิิı4	$\underline{20.1}$	Fuse, Cartridge, High Internupting Capacity
MM-C-3098	19.1	Crystal Unit. Quartz. General Specification for
Mil-C-3607	15.1	Connector, Coaxial Radio Frequency, Series Putse, General Spectications for
MIL-C-3643	15.1	Connector, Coaxial, Radio Frequency, Series NH, Associated Fitings, General Spectication for
MIL-C-3650	15.1	Connector, Coaxial, Radio Frequency, Series LC

SPECAFICATION	SECTION:	TITE
M12-C-3655	15.1	Connector, Phy and Pecoptacle, Ebotrical (Coaxial Series Twin) and Associated Fittings, General Specification for
MH-C-3767	15.1	Cormoctor, Phig and Recoptacion (Power, Bladod Type) General Specification for
MIL-S3786	14.3	Swich, Potary (Circuit Selector, Low-Current (Capacity)), General Specification for
Miti-Coss50	14.1	Swich, Toggio, Environmentaliy Seaied, Generai Specificmion for
MIL-C-3965	10.13	Capecitor, Fixed, Electrolytic (Nonsolid Electrolyte). Tantalum, General Specilication for
MIL-C-5015	15.1	Connector, Electrical, Circular Threaded, AN Type, General Specillication for
MIL-F-5372	22.1	Fuse, Current Limiter Type, Aircraft
MIL-R-5757	13.1	Relay. Electrical (For Electronic and Communication Type Equipment). General Specification for
MIL-R-6106	13.1	Relay, Electromagnetic (Including Established Reliability (ER) Types). General Specificution for
MIL-L-6363	20.1	Lamp, Incandescent, Aviation Service, General Requirement for
MIL-S-8805	14.1. 14.2	Switches and Switch Assomblies, Sensitive and Push, (Snap Action) General Specification for
MIL-S-8834	14.1	Switches, Toggle, Positive Break, General Specification for
MİL-M-10304	18.1	inieter, Electrical indicaling, Panei Type, Ruggedized, Generai Spectication for
MIL-R-10509	9.2	Resistor, Fbed Fum (High Stability), General Specitication ior
MIL-C-10950	10.8	Capacitor, Fixed, Mica Dielectric, Button Style, General Specification for
MIL-C-11015	10.10	Cepecitor, Fixed, Ceramic Dielectric (General Purpose), General Spectication for
MIL-C-11272	10.9	Capactior, Fred, Glass Dielectric, General Spectication for
M MiL-C-11693	10.2	Capacior, Feed Through. Radio interierence Reduction AC and DC. (Hermetically Sealod in Motol Ceses) Established and Nonestablished Reliability, General Specification for
Nㅐ는ํ-11804	8.3	Resiator, Fixed, Film (Power Type), General Spectication for
MIL-C-12889	10.1	Capuctior, By-Pass', Radio - Interference Reduction, Paper Dielectric. AC and DC. (Hermetically Sealed in Metallic Cases), General Specilication for
Mili-F-12934	9.10	Fesistor, Variabie, Wirewound, Precision, Generai Specitication ior

2.0 REFERENCE DOCUMENTS

SPECAFKATIION	SECTION *
MR-C-14157	10.3
MKL-C-14409	10.17
Mill-F-15160	22.1
Mu-C-15305	11.2
M1L-F-15733	21.1
MKL-C-18312	10.4
MK-F-18327	21.1
MIL-R-18546	9.7
Mill-S-19500	6.0
MHL-R-19523	13.1
MRL-R-19648	13.1
MIL-C-19978	10.3
MIL-T-21038	11.1
MIL-C-21097	15.2
M1L-R-22097	9.13
MK-R-22684	9.2
MRL-S-22710	14.4
MRL-S-22885	14.1
Mil-C-22992	15.1
M1L-C-23183	10.19
M1L-C-23269	10.9
MIL-R-23285	9.15

TITLE

Cenpectior, Pxed, Peper (Paper Plastic) or Plestic Dielectric, Direct Current (Hermetically Sealod in Metal Cases) Established Reliability, General Specficication for

Capacitor, Variable (Piston Type, Tubular Trimmer), General Specticication for

Fuse, instrument, Power and Telephone
Coll, Frued and Variable, Radio Frequency, General Specification for
Filer, Radio Interierence, General Specification for
Cepectior, Fixed, Motallzed (Paper, Paper Plastic or Plastic Film) Dielectric, Direct Current (Hermetically Sealed in Metal Cases), General Specification for

Filter, High Pass, Low Pass, Band Pass, Band Suppression and Dual Functioning, General Specification for

Resistor, Fixed, Wirewound (Power Type, Chassis Mounted), General Speclfication for

Semiconductor Device, General Specification for
Rolay, Control. Naval Shipboard
Retay, Time, Detay, Thermal, General Specification for
Capactor, Fixed Plastic (or Paper-Plastic) Dielectric (Hermetically Sealed in Metal, Ceramic or Glass Cases), Established and Nonestablished Reliability, General Specification for

Transformer, Pulse, Low Power, General Specification for
Connector, Electrical, Printed Wiring Board, General Purpose, General Spectication for

Resistor, Variable, Nonwirewound (Adjustment Types), General Specification for

Reststor, Fixed, Film, Insulated, General Specification for
Swhch, Rotary (Printed Circuit), (Thumbwheel, In-line and Pushbution), General Specification for

Switches, Pushbutton, Illuminated, General Specification for
Connector, Cylindrical, Heavy Duty, General Specification for
Cepechtor, Fxed or, Variable, Vacuum Dielectric, General Specification for

Capscitor, Fixed, Glass Dielectric, Established Reliablity, General Spectification for

Resistor, Variable, Nonwirewound, General Specification for

SPECIFICATION	SECTION:	TITE
MIL-F-23419	22.1	Fuse, Instrument Type, General Specification for
MIL-T-23648	9.8	Thermistor, (Thermally Sensitive Resistor), Insulated, General Specallication for
MIL-C-24308	15.1	Connector, Electric, Rectangular, Miniature Polarized Shell, Rack and Panel, General Spectication for
MIL-C-25516	15.1	Connector, Electrical, Miniature, Coaxial, Environment Pesistant Type. General Spectication for
Mil-C-26482	15.1	Connector, Electrical (Circular, Minieture, Cuick Disconnect. Environment Resisting) Receptacles and Phigs, General Specification for
MIL-R-27208	9.9	Resistor, Variable, Wirewound, (Lead Screw Activated) General Specification for
MIL-C-28748	15.1	Connector, Electrical, Rectangular, Rack and Panel, Solder Type and Crimp Type Contacts, General Specification for
MIL-R-28750	13.2	Relay, Solid State, General Specification for
M1L-C-28804	15.1	Connector, Electric Rectangular, High Density, Polarized Central Jackscrow, General Specification for, Inactive for New Designs
MIL-C-28840	15.1	Connector, Electrical, Circular Threaded, High Density. High Shock Shipboard, Class D, General Specification for
MIL-M-38510	5.0	Microcircuits, General Specification for
MIL-H-38534	5.0	Hybrid Microcircuits, General Specification for
MIL-I-38535	5.0	Integrated Circuits (Microcircuits) Manufacturing, General Spectication for
MIL-C-38999	15.1	Connector, Electrical, Circular, Miniature, High Density, Quick Disconnect, (Bayonet, Threaded, and Breech Coupling) Environment Resistant, Removable Crimp and Hermetic Solder Contacts, General Specification for
MIL-C-39001	10.7	Capactior, Fbred, Mica Dielectric, Established Reliability, General Specification for
MIL-R-39002	9.11	Reststor, Variable, Wirewound, Semi-Precision, General Spectication for
MIL-C-39003	10.12	Capacitor, Fixed, Electrolytic. (Solid Electrolyte), Tantalum, Eatablished Reliability, General Specificution for
MIL-R-39005	9.5	Resistor, Fured, Wirewound, (Accurate) Establishod Rollability, General Specitication for
MIL-C-39006	10.13	Capacitor, Fixed, Electrolytic (Nonsolid Electrolyte) Tantalum Established Reliability, General Specification for
MIL-R-39007	9.6	Resistor, Fixed, Wirewound (Power Type) Established Reliability. General Specification for

SPECIFICATION	SECTION*	TIIE
MIL-R-39008	9.1	Resistor, Fered, Composition, (Insulated) Established Reliability, General Specification for
MLI-R39009	9.7	Restator, Fued, Wrowound (Power Type, Chassis Moumed) Established Reliability, General Specification for
MIL-C-39010	11.2	Coll, Fired, Radio Frequency, Moided, Established Reliability, General Specification for
M ${ }^{\text {L }}$-C-39012	15.1	Connector, Coaxial, Radio Frequency, General Specification for
M1-C-39014	10.10	Capacitor, Fbeed, Ceramic Dielectric (General Purpose) Established Reliability, General Specification for
MR-C-39015	9.9	Resietor, Variable, Wirewound (Lead Screw Actuated) Established Reliability, General Specification for
MUL-R-39016	13.1	Relay, Electromagnetic, Established Reliability, General Specification for
MIL-R-39017	9.2	Reeistor, Fixed, Film (Insulated), Established Reliability, General Specification for
MIL-C-39018	10.14	Capacitor, Fixed, Electrohytic (Ahuminum Oxide) Established Reliability and Nonestablished Reliability, General Specification for
MHL-C-39019	14.5	Cricult Breakers, Magnetic, Low Power, Seated, Trip-Free, General Specilication for
MIL-C-39022	10.4	Capecitor, Fixed, Metallized Paper, Paper-Plastic Film, or Plastic Film Dieloctric, Direct and Ahernating Current (Hermetically Sealed in Metal Cases) Established Reliability, General Specification for
MIL-R-39023	9.15	Resistor, Variable, Nonwirewound, Precision, General Specification for
MIL-R-39035	9.13	Resistor, Variable, Nonwirewound, (Adjustment Type) Established Reliability, General Spectfication for
MIL-C-49142	15.1	Connector, Triaxial, RF, General Specification for
MR.P-55110	15.2	Printed Wiring Boards
MIL-R-55182	9.2	Resistor, Fixed, Fint, Established Reliability, General Specification for
MIL-C-55235	15.1	Connector, Coaxial, RF. General Specification for
MIL-C-55302	15.2	Connector, Printed Circuit, Subassembly and Accessories
M 1 L-C-55339	15.1	Adapter, Cosoxial, RF, General Specification for
M1L-C-55514	10.5	Cepecthor, Fixed, Plestic (or Motallized Plastic) Dielectric, Direct Current, In Non-Métal Cases, General Specification for
MIL-C-55629	14.5	Circuit Breaker, Magnetic, Unsealed, Trip-Free, General Specification for
MRL-T-55631	11.1	Transformer, Intermediate Frequency, Radio Frequency, and Discriminator, General Specification for

SPECIFICATION	SECTION*	IITLE
MHL-C-55681	10.11	Capacitor, Chip, Multiple Layer, Fixed, Ceramic Dielectric, Established Reliability, General Specification for
MRL-C-81511	15.1	Connector, Electrical, Circular, High Density, Quick Dieconnect, Environment Resisting, and Accessories, General Spectication for
MIL-C-83383	14.5	Circuit Breaker, Remote Control. Thermal, Trip-Free. General Specirication for
MKL-R-83401	9.4	Pesistor Networks, Fixed, Film. General Spectication for
MIL-C-83421	10.6	Capacitor, Fixed Supermetallized Plastic Film Dielectric (DC, AC or DC and AC) Hermeticaliy Sealed in Metal Cases, Estabtished Reliability. General Epecilication for
MIL-C-83513	15.1	Connector, Electrical, Rectangular, Microminiature, Polarized Shell. General Specticmation for
MLL-C-83723	15.1	Connector, Electrical (Circular Environment Resisting). Receptades and Plugs, General Specification for
MLL-R-83725	13.1	Relay, Vacuum, General Specitication for
MIL-R-83726	$\begin{array}{r} 13.1 .13 .2 \\ 13.3 \end{array}$	Relay, Time Delay, Electric and Electronic. General Spectication for
MIL-S-83731	14.1	Switch. Toggle, Unsealed and Sealed Toggle, General Specification for
Mn_C-83733	15.1	Connector, Electrical, Miniature, Rectangular Type, Rack to Panel, Environment Resisting, 200 Degrees C Total Continuous Operating Temperature, General Specification for
MIL-S-83734	15.3	Socket, Plug-in Electronic Components, General Specification for
STANDARD		TITLE
MILSTD-756	Relin	ty Modeling and Prediction
MIL-STD-883	Test	thods and Procedures for Microelectronics
MLL-STD-975	NAS	Standand Electrical. Electronic and Electromechanical Parts Liet
MM.-8TD-1547		Materials and Processes for Space Launch Vehicies, Technical ments for
MIL-STD-1772	Cert	ation Requtroments for Myorid Microcirculi Factilies and Lines

Copies of specifications and standards required by contractors in connection with specific acquisition functions should be obtalned from the contracting activity or as directed by the contracting officer. Single copies are also available (without charge) upon written request to:

```
Standardization Document Order Desk
700 Robins Ave.
Building 4, Section D
Philadelphia, PA 19111-5094
(215) 697-2667
```

3.1 Rellablity EngIneering - Reliability is currently recognized as an essential need in military electronic systems. It is looked upon as a means for reducing costs from the tactory, where rework of defective components adds a non-productive overhead expense, to the field, where repair costs inctude not only parts and labor but also transportation and storage. More importantly, reliability directly impacts force effectiveness, measured in terms of availability or sortie rates, and determines the stze of the "logistics tail" inhibiting force utilization.

The achievement of rellability is the function of reliability engineering. Every aspect of an electronic system, from the purty of materials used in is component devices to the operators interface, has an impact on reliability. Reliability engineering must, therefore, be applied throughout the system's development in a diligent and timely fashion, and integrated whith other engineering disciplines.

A variety of reliability engineering tools have been developed. This handbook provides the modets supporting a basic tool, reliability prediction.
3.2 The Role of Rellablity Prediction - Reliabillty prediction provides the quantitative baseline needed to assess progress in reliability engineering. A prediction made of a proposed design may be used in several ways.

A characteristic of Computer Aided Design is the ability to rapidly generate alternative solutions to a particular problem. Reliability predictions for each design ahernative provide one measure of relative worth which, combined with other considerations, will aid in selecting the best of the available options.

Once a design is seiecied, tune reliability prediction may be used as a guide io improvement by sinowing the highest contributors to failure. If the part stress analysis method is used, it may also reveal other frultul areas tor change (e.g., over stressed parts).

The impact of proposed design changes on reliability can be determined only by comparing the reliability predictions of the existing and proposed designs.

The ability of the design to maintain an acceptable reliability level under environmental extremes may be assessed through reliability predictions. The predictions may be used to evaluate the need for environmental control systems.

The effects of complexity on the probability of mission success can be evaluated through reliability predictions. The need for redundant or back-up systems may be determined with the aid of reliability predictions. A tradeoff of redundancy against other reliability enhancing techniques (e.g.: more cooling, higher part quality, etc.) must be based on reliability predictions coupled with other pertinent considerations such as cost, spece lifritations, etc.

The prediction will also help evahuate the sionlicance of reported fallures. For example, h several fallures of one type or component occur in a system, the predicted fallure rate can be used to determine whether the number of fallures is commensurate with the number of components used in the system, or, that it indicates a problom area.

Finally, rellability predictions are usetul to various other engineering analyses. As examples, the location of built-in-test circuitry should be influenced by the predicted failure rates of the circuliry monitored, and maintenance strategy planners can make use of the relative probability of a fallure's location, based on predictions, to minimize downtime. Reliability predictions are also used to evaluate the probabilities of failure events described in a failure modes, effects and criticality analysis (FMECAs).
3.3 Limitations of Rellability Predictions - This handbook provides a common basis for reliability predictions, based on analysis of the best available data at the time of lssue. It is intended to make reliability prediction as good a tool as possible. However, 隹e any tool, reliability prediction must be used intelligently, with due consideration of its limitations.

The first limitation is that the failure rate models are point estimates which are based on available data. Hence, they are valid for the condifions under which the data was obtained, and for the devices covered. Some extrapolation during model development is possible, but the inherently empirical nature of the modeis can be severely resiricive. For exampie, none oi the modeis in this handibook predict nuciear survivability or the effects of ionizing radiation.

Even when used in similar environments, the differences between system applications can be significant. Predicted and actieved rellability have aways been closer for ground electronic systems than for avionic systems, because the environmental stresses vary less from system to system on the ground and hence the field conditions are in general closer to the environment under which the data was collected for the prediction model. However, failure rates are also impacted by operational scenarios, operator characteristics, maintenance practices, measurement tectniques and differences in deftintion of talture. Hence, a rellabllity prediction should nover be assumed to represent the expected fiald rellability as measured by the user (i.e., Mean-Time-Between-Maintenance, Mean-Time-Between-Removals, etc.). This does not negate its value as a reliability engineering tool; note that none of the applications discussed above requires the predicted reliability to match the field measurement.

Electronic technology is noted for its dynamic nature. New types of devices and new processes are continually introduced, compounding the difficulties of predicting reliability. Evolutionary changes may be handled by extrapolation from the existing models; revolutionary changes may dety analysis.

Another limitation of rellabilty predictions is the mechanics of the process. The part stress analysis method requires a signilicant amount of design detail. This naturally imposes a time and cost penalty. More significantly, marry of the detalis are not avaliable in the earty design stages. For this reason this handbook contains both the part stress anabyets mothod (Soctions 5 through 23) and a simpler parts coumt method (Appendix A) which can be used in earty design and bid formulation stages.

Finally, a basic limitation of reliability prediction is its dependence on correct application by the user. Those who correctly apphy the modets and use the information in a conscientious reliability program will find the prediction a usetul tool. Those who view the prediction only as a number which must exceed a specified value can usually find a way to achieve their goal without any impact on the system.

3.4 Part Stress Analysis Prediction

3.4.1 Appicability - This method is applicabie when most of the design is completed and a detailed parts list including part stresses is avallable. It can also be used during later design phases for rellability trade-offs vs. part selection and stresses. Sections 5 through 23 contain failure rate modets for a broad variety of parts used in electronic equipment. The parts are grouped by major categorles and, where appropriate, are subgrouped whin categories. For mechanical and electromechanical parts not covered by this Handboos, reffer to Dibliographyy Hems 20 and 36 (Appendix C).
The failure rates presented apply to equipment under normal operating conditions, i.e., with power on and performing its intended functions in is intended environment. Extrapolation of amy of the base fallure rate models beyond the tabulated values such as high or sub-zero temperature, electrical stress values above 1.0, or extrapolation of any associated model modifiers is completely invalid. Base fallure rates can be interpolated between electrical stress values from 0 to 1 using the undertying equations.

The general procedure for determining a board level (or system level) failure rate is to sum individually calculated fallure rates for each component. This summation is then added to a failure rate for the circuit board (which inchudes the effects of soldering parts to ti) using Section 16, Interconnection Assemblies.

MIL-HDBK-217F

For parts or wires soldered together (e.g., a jumper wire between two parts), the connections model appearing in Section 17 is used. Finally, the effects of connecting circuit boards together is accounted for by adding in a failure rate for each connector (Section 15, Connectors). The wire between connectors is assumed to have a zero failure rate. For various service use profiles, duty cycles and redundancies the procedures described in MIL-STD-756, Reliability Modeling and Prediction, should be used to determine an effective system level faikre rate.
3.4.2 Part Quality - The qualty of a part has a direct effect on the part fallure rate and appears in the part models as a factor, π_{Q}. Many parts are covered by specifications that have several quality levels, hence, the part models have vabues of π_{Q} that are keyed to these quality levels. Such parts with their quality designators are shown in Table 3-1. The detalled requirements for these levels are clearty defined in the applicable specification, except for microcircults. Microcircuits have quality levels which are dependent on the number of MiL-STD-883 screens (or equivatent) to which they are subjected.

Table 3-1: Parts with Multi-Level Quallty Specifications

Part	Quality Designators
Microcircuits	S, B, B-1, Other: Quality Judged by
Screening Level	
Discrete Semiconductors	JANTXV, JANTX, JAN
Capacitors, Established Reliability (ER)	D, C, S, R, B, P, M, L
Resistors, Established Rellability (ER)	S, R, P, M
Coils, Molded, R.F., Reliability (ER)	S, R, P, M
Relays, EStablished Reliability (ER)	R, P, M, L

Some parts are covered by older specifications, usually referred to as Nonestablished Reliability (Non-ER), that do not have multi-levels of quality. These part models generally have two quality levels designated as "MIL-SPEC.", and "Lower". If the part is procured in complete accordance with the applicable specification, the π_{Q} value for MIL-SPEC should be used. If any requirements are waived, or if a commercial part is procured, the π_{Q} value for Lower should be used.

The foregoing discussion involves the "as procured" part quality. Poor equipment design, production, and testing facilities can degrade part quality. The use of the higher quality parts requires a total equipment design and quality control process commensurate with the high part quality. It would make little sense to procure high quality parts only to have the equipment production procedures damage the parts or introduce latent defects. Total equipment program descriptions as they might vary with different part quality mixes is beyond the scope of this Handbook. Reliability management and quality control procedures are described in other DOD standards and publications. Nevertheless, when a proposed equipment development is pushing the state-of-the-art and has a high reliability requirement necessitating high quality parts, the iotal equipment program should be given careful scrutiny and not just
the parts quality. Otherwise, the low faikre rates as predicted by the models for high quality parts will not be realized.
3.4.3 Use Environment - All part reliability models include the effects of environmental stresses through the environmentai iactor, π_{E}, excepi for tine eifecis of ionizing radiation. The descriptions of these emvironments are shown in Table 3-2. The x_{E} factor is quantified within each part tailure rate model.
These environments encompass the major areas of equipment use. Some equipment will experience more than one environment during its normal use, e.g., equipment in spacecraft. In such a case, the reliability analysis should be segmented, namely, missile launch $\left(M_{L}\right)$ conditions during boost into and return from orbit, and space filight $\left(S_{F}\right)$ while in orbit.

Table 3-2: Environmental Symbol and Description

Environment	${ }^{\text {E E S S }}$ Smbol	Equivatom MIL-HDBK-217E. Notice 1 π_{E} Symioui	Description
Ground, Benign	G_{B}	G_{B} $G_{M S}$	Nonmobile, temperature and humidity controlled environments readily accessible to maintenance; inciudes iacoratory insiruments and tost equipment, medical electronic equipment, business and scientific computer complexes, and missiies and suppori equipment in ground silos.
Ground, Fixad	G_{F}	G_{F}	Noderately controllod environmente such as installation in permanent racks with adequate cooling air and possible installation in unheated buildings; includes permanent installation of air traffic control radar and communications facilities.
Ground, Mobile	G_{M}	$\begin{aligned} & G_{M} \\ & M_{P} \end{aligned}$	Equipment instalied on wheeled or tracked vohicles and equipment manually transported; includes tactical missile ground support equipment, mobile communication equipment, tactical fire direction sysiems, handineid communications equipment, laser designations and range finders.
Naval, Sheltered	\mathbf{N}_{S}	$\mathrm{N}_{\mathbf{S}}$ $N_{\text {SB }}$	Includes sheltered or below deck conditions on surface ships and equipment instalied in submarines.
Naval, Unstentered	N	${ }^{\mathrm{N}}$ N_{N} N_{H}	Unprotected surface shipborme equipment exposed to weather conditions and equipment immersed in salt water. Inctudes sonar equipment and equipment installod on hydrofoil vessels.

MIL-HDBK-217F

Table 3-2: Environmental Symbol and Description (cont'd)

Environment	π_{E} Syimbol	Equivalent MIL-HDBK-217E. Notice 1 π_{E} Symbol	Description
Aitbome, Inhabited. Cargo	$A_{i C}$	$\begin{aligned} & A_{I C} \\ & A_{I T} \\ & A_{I D} \end{aligned}$	Typical conditions in cargo compartments which can be occupied by an alicrew. Environment extremes of pressure, temperature, shock and vibration are minimad. Examples inctude long mission atrorafl such as the C130, C5, B52, and C141. This category alo applise to inhahined areae in iown performance smaller aircraft such as the T38.
Airborne, Inhabited. Fighter	$\mathrm{A}_{\text {IF }}$	$\begin{aligned} & A_{I F} \\ & A_{i A} \end{aligned}$	Same as $A_{I C}$ but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111, F/A 18 and A10 aircratt.
Airborne, Uninhabited, Cargo	Auc	Auc AUT AUB	Environmentally uncontrolled areas which cannot be inhebuited by an aircrew during flight. Environmental extremes of pressure. temperature and shock may be severe. Cxamples includs uninhatited areas of long mission aircraft such as the C130, C5, B52 and C141. This category also applies to uninhabited area of lower periormance smatler aircraft such as the T38.
Airborne. Uninhabited, Fighter	ALF	AuF A UA	Same as AUC but installed on high performance aircraft such as fighters and interceptors. Examples include the F15, F16, F111 and A10 aircratt.
Airborne, Rotary Winged	$A_{\text {AW }}$	${ }^{\text {A PWW }}$	Equipment instalied on helicopters. Applies to both internally and externally mounted equipment such as laser designators, fire control systems, and communications equipment.
Space, Flight	S_{F}	S_{F}	Eäth ortùal. Approactes benign ground conditions. Vehicle nelther under powered flight nor in atmospheric reentry; includes sateilites and shutties.

3.0 INTRODUCTION

Table 3-2: Environmental Symbol and Description (cont'd)

Environment	π_{E} Symbol	Equivalent MILHDBK-217E, Notice 1 π_{E} Symbol	Description
Missile, Flight	M_{F}	$\begin{aligned} & M_{F F} \\ & M_{F A} \end{aligned}$	Conditions related to powered flight of air breathing missiles, cruise missiles, and missiles in unpowered free flight.
Missile, Launch	M_{L}	$\begin{aligned} & M_{L} \\ & U_{S L} \end{aligned}$	Severe conditions related to missilie launch (air, ground and sea), space vehicle boost into orbit, and vehicle re-entry and landing by parachute. Also applies to solid rocket motor propulston powered tigit. and torpedo and missile launch from submarines.
Cannon, Launch	C_{L}	C_{L}	Extremely severe conditions related to cannon launching of 155 mm . and 5 inch guided projectiles. Conditions apply to the projectile from launch to target impact.

3.4.4 Part Fallure Rate Models - Part failure rate models for microelectronic parts are significantly different from those for other parts and are presented entirely in Section 5.0. A typical example of the type of model used for most other part types is the following one for discrete semiconductors:

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{B}} \pi_{\mathrm{T}} \pi_{\mathrm{A}} \pi_{\mathrm{R}} \pi_{\mathrm{S}} \pi_{\mathrm{C}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}
$$

where:
λ_{p} is the part failure rate,
λ_{b} is the base failure rate usually expressed by a model relating the influence of electrical and temperature stresses on the part,
π_{E} and the other π factors modify the base failure rate for the category of environmental application and other parameters that affect the part reliability.

The π_{E} and π_{Q} factors are used in most all models and other π factors apply only to specific models. The applicability of π factors is identified in each section.

The base failure rate $\left(\lambda_{b}\right)$ models are presented in each part section along with identification of the applicable model factors. Tables of calculated λ_{b} values are also provided for use in manual calculations. The model equations can, of course, be incorporated into computer programs for machine processing. The tabulated values of λ_{b} are cut off at the part ratings with regard to temperature and stress, hence, use of parts beyond these cut off points will overstress the part. The use of the λ_{b} models in a computer

MIL-HDBK-217F
program should take the part rating limits into account. The λ_{b} equations are mathematically continuous beyond the part ratings but such failure rate values are invalid in the overstressed regions.

Al the part modets inctude failure data from both catastrophic and permanent drift failures (e.g., a resistor permanently falling out of rated tolerance bounds) and are based upon a constant failure rate, except for motors which show an increasing failure rate over time. Faikures associated with connection of parts into circuit assemblies are not included within the part failure rate models. Information on connection reliability is provided in Sections 16 and 17.
3.4.5 Thermal Aspects - The use of this prediction method requires the determination of the temperatures to which the parts are subjected. Since parts reliability is sensitive to temperature, the thermal anahysis of any design should faity accuratety provide the ambient temperatures noedod in using the part models. Of course, lower temperatures produce better reliability but also can produce increased penatties in terms of added loads on the environmental control system, unless achieved through improved thermal design of the equipment. The thermal analysis shouid be part of the design process and included in all the trade-off studies covering equipment pertormance, reliability, weight, volume, environmental control systems, etc. References 17 and 34 listed in Appendix C may be used as guides in determining component temperatures.
 For completeness, the chacklist inctudes catogories for roliability modeling and alfocation, which are sometimes delivered as part of a prediction report. It should be noted that the scope of any reliability analysis depends on the specific requirements called out in a statement-of-work (SOW) or system specification. The inclusion of this checklist is not intended to change the scope of these requirements.

Table 4-1: Rellabillty Analysis Checklist

Major Concerns	Comments
MODELS Are all functional elements included in the reliability block diagram /model? Are all modes of operation considered in the math modet? Do the math model results show that the design achioves the reliability requiremeni?	System design drawings/diagrams must be reviowed to be sure that the reliability modeVdiagrem agrees with the hardware. Duty cycles, ahernate paths, degraded conditions and redundant units must be defined and modeted. Unit failure rates and redundancy equations are used from tine detaiied pari predictions in the system math model (Soe MIL-STD-756, Reliability Prediction and Modeling).
ALLOCATION Are system reliability requirements allocated (subdivided) to useful levels? Does the allocation process consider complexity, design tiexioility, and safeity margins?	Useful levels are defined as: equipment for subcontractors, assemblies for sub-subcontractors, circuil boards for designers. Conservative values are needed to prevent reallocation at every desigñ change.
PREDICTION Does the sum of the parts equal the value of the module or unit? Are environmental conditions and part quality representative of the requirements? Are the circuit and part temperatures defined and do they represent the design? Are equipment, assembly, subassembly and part reliability drivers identified? Are alternate (Non MIL-HDBK-217) failure rates higniigited aiong with the rationaie for their use? Is the level of detail for the part failure rate models sufficient to reconstruct the result? Are critical components such as VHSIC, Monolithic Microwave Integrated Circults (MMIC), Application Specific Integrated Circuits (ASIC) or Hybrids highlighted?	Many predictions neglect to include all the parts producing optimistic results (check for solder connections, connectors, circuit boards). Optimistic quality lovels and favorable onvironmental conditions are often assumed causing optimistic results. Temperature is the biggest driver of part failure rates; low temperature assumptions will cause optimistic res̃ults. Identification is needed so that corrective actions for reliability improvement can be considered. Use of altemate failure rates, if deemed necessary, require submission of backup data to provide credence in the values. Each component type should be sampled and failure rates completely reconstructed for accuracy. Prediction methods for advanced technology parts should be carefully evaluated for impact on the module and system.

This section presents fallure rate prediction models for the following ten major classes of microelectronic devices:

$\frac{\text { Section }}{5.1}$	Monolithic Pipolar Digital and Linear Gate/Logic Array Devices
5.1	Monolithic MOS Digital and Linear Gate/Logic Array Devices
5.1	Monolithic Bipolar and MOS Digital Microprocessor Devices
5.2	Monolithic Bipolar and MOS Memory Devices
5.3	Very High Speed integraied Circuit (VHSICNHSiC-Like and VLSi) CMOS Devices is Gates)
5.4	Monolithic GaAs Digital Devices
5.4	Monolithic GaAs MAMIC
5.5	Hybrid Microcircuits
5.6	Suriace Acoustic Wave Devices
5.7	Magnetic Bubble Memories

in the titie description of each monolithic device type, Bipolar represerts all TTL, ASTTL, DTL, ECL, CMA, ALSTTL, HTTL, FTTL, F, LTTL, STTL, BICMOS, LSTTL, IIL, I ${ }^{3}$ L and ISL devices. MOS represents all metal-oxide microcircuits, which includes NMOS, PMOS, CMOS and MNOS tabricated on various substrates such as sapphire, polycrystalline or single crystal silicon. The hybrid model is structured to accommodate all of the monolthic chip device types and various complexity levels.

Monolithic memory complexity factors are expressed in the number of bits in accordance with JEDEC STD 21A. This standard, which is used by all government and industry agencies that deal with microcircuit memories, states that memories of 1024 bits and greater shall be expressed as K bits, where $1 \mathrm{~K}=1024$ bits. For example, a 16 K memory has 16,384 bits, a 64 K memory has 65,536 bits and a 1 M memory has $1,048,576$ bits. Exact numbers of bits are not used for memories of 1024 bits and greater.

For devices having both linear and digital functions not covered by MIL-M-38510 or MIL-I-38535, use the linear modiei. Line drivers and line receivers are considered linear devices. For linear devices not covered by MIL-MI-38510 or MIIL=-38535, use the transistor count from the schematic diagram of the device to determine circuit complexity.

For dightal devices not covered by MIL-M-38510 or MIL-I-38535, use the gate count as determined from the logic diagram. A J-K or R-S flip flop is equivalent to 6 gates when used as part of an LSI circuit. For the purpose of this Handbook, a gate is considered to be any one of the following functions; AND, OR, exclusive OR, NAND, NOR and inverter. When a logic diagram is unavailable, use device transistor count to determine gate count using the following expressions:

Technology	Gate Approximation
Bipolar	No. Gates $=$ No. Transistors/3.0
CMOS	No. Gates $=$ No. Transistors/4.0
All other MOS except CMOS	No. Gates $=$ No. Transistors/3.0

MIL-HDBK-217F

5.0 MICROCIRCUITS, INTRODUCTION

A detailed form of the Section 5.3 VHSICNHSIC-Like model is inctuded as Appendix B to allow more detalled trade-ofis to be performed. Reference 30 should be consulted for more information about this model.

Reference 32 should be consulted for more Information about the modols appearing in Sections 5.1, 5.2, 5.4,5.5, and 5.6. Reference 13 should be consulted for additional information on Section 5.7.

MIL-HDBK-217F
5.1 MICROCIRCUITS, GATE/LOGIC ARRAYS AND MICROPROCESSORS

DESCRIPTION

1. Bipolar Devices, Dighal and Linear Gate/Logic Arrays
2. MOS Devices, Digtal and Linear Gate/Logic Arrays
3. Field Programmable Logic Array (PLA) and Programmable Array Logic (PAL)
4. Microprocessors

$$
\lambda_{p}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) x_{Q} \sigma_{L} \quad \text { Faikres/10 }{ }^{6} \text { Hours }
$$

Bipolar Digital and Linear Gate/Logic Array Die Complexily Faihre Rate - C_{1}

Digital		Linear				PLAMPAL	
No. Gates	C_{1}	No.	Tran	cistors	C_{1}	No. Gates	C_{1}
1 to 100	. 0025	1	to	100	. 010	Up to 200	. 010
101 to 1,000	. 0050	101	to	300	. 020	201 to 1,000	. 021
1,001 to 3,000	. 010	301	to	1.000	. 040	1,001 to 5,000	. 042
3,001 to 10,000	. 020	1,001		10,000	. 060		
10,001 to 30,000	. 040						
30,001 to 60,000	. 080						

MOS Digital and Linear Gate/Logic Array Die Complexily Fallure Rate - $\mathrm{C}_{1}{ }^{\text {* }}$

*NOTE: For CMOS gate counts above $\mathbf{6 0 , 0 0 0}$ use the VHSICNHSIC-Like model in Section 5.3

Microprocessor
Die Complexity Failure Rate - C_{1}

No. Bits	Bipolar $_{1}$	MOS
	.060	.14
Up to 16	.12	.28
Up to 32	.24	.56

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
C_{2}	Section 5.9
$\pi_{\mathrm{E},} \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$	Section 5.10

DESCRIPTION

1. Read Only Memories (ROM)
2. Programmable Read Only Memories (PROM)
3. Ukraviolet Eraseable PROMs (UVEPROM)
4. "Flash," MNOS and Floating Gate Electrically Eraseable PROMs (EEPROM). Includes both floating gate tunnel oxide (FLOTOX) and textured polysilicon type EEPROMs
5. Static Random Access Memories (SRAM)
6. Dynamic Random Access Memories (DRAM)
$\lambda_{p}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}+\lambda_{\text {cyc }}\right) \pi_{Q} \pi_{L}$. Failures $/ 10^{6}$ Hours

Die Complexity Failure Rate - C_{1}

Memory Size, B (Bits)	MOS				Bipolar	
	ROM	PROM, UVEPROM, EEPPROM, EAPROM	DRAM	SRAM (MOS \& BiMOS)	ROM, PROM	SRAM
Up to 16 K	. 00065	. 00085	. 0013	. 0078	. 0094	. 0052
16 K < $\mathrm{B} \leq 64 \mathrm{~K}$. 0013	. 0017	. 0025	. 016	. 019	. 011
$64 \mathrm{~K}<\mathrm{B} \leq 256 \mathrm{~K}$. 0026	. 0034	. 0050	. 031	. 038	. 021
$256 \mathrm{~K}<\mathrm{B} \leq 1 \mathrm{M}$. 0052	. 0068	. 010	. 062	. 075	. 042

A $_{1}$ Factor for $\lambda_{\text {cyc }}$ Calculation
Total No. of Programming Cycles Over EEPROM Life, Flotox ${ }^{1}$ Textured- Poly Up to 100 .00070 .0097 $100<C \leq 200$.0014 .014 $200<C \leq 500$.0034 .023 $500<C \leq 1 K K$.0068 .033 $1 K<C \leq 3 K$.020 .061 $3 K<C \leq 7 K$.049 .14 $7 K<C \leq 15 K$.10 .30 $15 K<C \leq 20 K$.14 .30 $20 K<C \leq 30 K$.20 .30 $30 K<C \leq 100 K$.68 .30 $100 K<C \leq 200 K$ 1.3 .30 $200 K<C \leq 400 K$ 2.7 .30 $400 K<C \leq 500 K$ 3.4 .30

1. $A_{1}=6.817 \times 10^{-6}$ (C)
2. No underlying equation for TexturedPoly.
A_{2} Factor for $\lambda_{\text {cyc }}$ Calculation

Total No. of Programming Cycles Over EEPROM Llfe, C	Textured-Poly A_{2}
Up to 300 K	0
$300 \mathrm{~K}<\mathrm{C} \leq 400 \mathrm{~K}$	1.1
$400 \mathrm{~K}<\mathrm{C} \leq 500 \mathrm{~K}$	2.3

All Other Model Parameters

Parametor	Refer to
π_{T}	Section 5.8
C_{2}	Section 5.9
$\pi_{E}, \pi_{Q}, \pi_{L}$	Section 5.10
$\lambda_{\text {cyc }}$(EEPROMS only	Page 5-5
$\lambda_{\text {cyc }}=0 \quad$ For all other devices	

NOTES: 1. See Reference 24 for modeling off-chip error detection and correction scinemes at tine memory sysiem ievei.
2. If EEPROM type is unknown, assume Flotox.
3. Error Correction Code Options: Some EEPROM manuiaciurers have incorporaied on-chip error correction circuitry into their EEPPOM devices. This is represented by the on-chip hamming code entry. Other manufacturers have taken a redundant cell approach which incorporates an extra storage transistor in every memory cell. This is represented by the two-needs-one redundiant celi entry.
4. The A_{1} and A_{2} factors shown in Section 5.2 were developed based on an assumed system life of 10,000 operating hours. For EEPROMs used in systems wh signiticantly longer or shorter expected lifetimes the A_{1} and A_{2} factors should be multiplied by:

10,000
System Lifetime Operating Hours

MIL-HDBK-217F

5.2 MICROCIRCUITS, MEMORIES
B_{1} and B_{2} Factors for $\lambda_{\text {cyc }}$ Calculation

DESCRIPTION

CMOS greater than $\mathbf{6 0 , 0 0 0}$ gates

Die Base Falture Rate - λ_{gD}

Part Type	λ_{BD}
Logic and Custom	0.16
Cote Array	0.24

Manuracturing Process Correction Faotor - $\bar{\pi}_{\text {MFG }}$

Mânufacturing Process	MMFG
QML or QPL	.55
Non QML or Non QPL	2.0

All Other Model Parameters

Parameter	Refer to
π_{T}	Section 5.8
$\pi_{E}, \pi_{\mathrm{Q}}$	Section 5.10

Package Type Correction Factor - IpT

	π TPT	
Package Trpe	Hermetic	Nontrormetic
DIP	1.0	1.3
Pin Grid Array	2.2	2.9
Chip Carrier	4.7	6.1
(Surface Mount		
Technology)		

Die Complexity Correction Factor $-\pi_{C D}$

Feature Size (Microns)	$A \leq .4$	$.4<A \leq .7$	$.7<A \leq 1.0$	$1.0<A \leq 2.0$	$2.0<A \leq 3.0$
.80	8.0	14	19	38	58
1.00	5.2	8.9	13	25	37
1.25	3.5	5.6	8.2	16	24
$\left.\pi_{C D}=\left(\frac{A}{.21}\right)\left(\frac{2}{X_{s}}\right)^{2}(.64)\right)+.36$	$A=$ Total Scribed Chip Die Area in cm^{2}	$X_{3}=$ Feature Size (microns)			
Die Area Conversion: $\mathrm{cm}^{2}=\mathrm{MIL}^{2}+155,000$					

MIL-HDBK-217F

5.4 MICROCIRCUITS, GAAS MWIC AND DIGITAL DEVICES

DESCRIPTION

Gallium Arsenide Microwave Monolithic Integrated Circuit (GaAs MMIC) and GaAs Digital Integrated Circults using MESFET Transistors and Gold Based Metallization

$$
\lambda_{p}=\left[C_{1} \pi_{T} \pi_{A}+C_{2} \pi_{E}\right] \pi_{L} \pi_{Q} \text { Falures } 110^{6} \text { Hours }
$$

MMIC: Die Complexily Failure Rates - C_{1}

Complexity (No. of Elements)	C_{1}
1 to 100	4.5
101 to 1000	7.2

1. C_{1} accounts for the following active elements: transistors, diodes.

Dioital: Die Complexity Fallure Rates - C_{1}

Complexity (No. of Elements)	C_{1}
1 to 1000	25
1,001 to 10,000	51

1. C_{1} accounts for the following active elements: transistors, diodes.

DESCRIPTION
 Hyourd Microcircuins
 $\lambda_{P}=\left[\Sigma N_{C} \lambda_{C}\right]\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{O} \pi_{L}$ Failures $/ 10^{6}$ Hours

$N_{c}=$ Number of Each Patticular Component
$\lambda_{c}=$ Faikre Rate of Each Particular Component
The general procedure for developing an overall hybrid failure rate is to calculate an individual failure rate for each component type used in the hybrid and then sum them. This summation is then modtried to
 failure rate is a function of the active component failure modified by the environmental factor (i.e., ($1+.2$ π_{E})). Only the component types listed in the following table are considered to contribute significantly to
the overall failure rate of most hybrids. All other component types (e.g., resistors, inductors, etc.) are constdered to contribute insignificantly to the overal hybrid fallure rate, and are assumed to have a lallure rate of zero. This simplification is valid for most hybrids; however, if the hybrid consists of mostly passive components then a failure rate should be caiculated for these devices. it facioring in other component types, assume $\pi_{Q}=1, \pi_{E}=1$ and $T_{A}=$ Hybrid Case Temperature for these calculations.

$\begin{gathered} \hline \text { Determine } \lambda_{c} \text { for These } \\ \text { Component Types } \\ \hline \end{gathered}$	Handbook Section	Make These Assumptions When Determining λ_{c}
Microcircuits	5	$C_{2}=0, \pi_{Q}=1, \pi_{L}=1, T_{J}$ as Determined from Section 5.12, $\lambda_{\mathrm{BP}}=0$ (for VHSIC).
Discrete Semiconductors	6	$\pi_{Q}=1, T_{J}$ as Determined from Section 6.14, $\pi_{E}=1$.
Capactors	10	$\begin{aligned} & \pi_{\mathrm{Q}}=1, T_{\mathrm{A}}=\text { Hybrid Case Temperature, } \\ & \pi_{\mathrm{E}}=1 . \end{aligned}$
NOTE: If maximum rated stress for a die is unknown, assume the same as for a discrototy package die of the same type. If the same die has several ratings based on the discrete packaged type, assume the lowest rating. Power rating used should be based on case temperature for discrete semiconouctors.		
Circuit Function Factor - π_{F}		All Other Hybrid Model Parameters
Circuit Type	$\pi_{\text {F }}$	Refer to Section 5.10
Digital	1.0	
Video, 10 MiHz < i < i GHz	1.2	
Microwave, $1>1 \mathrm{GHz}$	2.6	
Linear, $\mathrm{i}<10 \mathrm{MHz}$	5.8	
Power	21	

MIL-HDBK-217F

5.6 MCROCIRCUITS, SAW DEVICES

DESCRIPTION Surface Acoustic Wave Devices

$$
\lambda_{P}=2.1 \pi_{Q} \pi_{E} \text { Failures/10 }{ }^{6} \text { Hours }
$$

Environmental Factor $-\pi_{E}$

Environment	π_{E}
G_{B}	.5
G_{F}	2.0
G_{M}	4.0
$\mathrm{~N}_{\mathrm{S}}$	4.0
$\mathrm{~N}_{\mathrm{U}}$	6.0
$\mathrm{~A}_{\mathrm{I}}$	4.0
$\mathrm{~A}_{\mathrm{IF}}$	5.0
$\mathrm{~A}_{\mathrm{UC}}$	5.0
$\mathrm{~A}_{\mathrm{UF}}$	8.0
$\mathrm{~A}_{\mathrm{RW}}$	8.0
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	5.0
M_{L}	12
C_{L}	220

5.7 MICROCIRCUITS, MAGNETIC BUBBLE MEMORIES

The magnetic bubble memory device in its present form is a non-hermetic assembly consisting of the following two major structural segments:

1. A basic bubble chip or die consisting of memory or a storage area (e.g., an array of minor loops), and required comtrol and detection elements (e.g., generators, various gates and detectors).
2. A magnetic structure to provide controlled magnetic fields consisting of permanent magnets, coils, and a housing.

These two structural segments of the device are interconnected by a mechanical substrate and lead frame. The interconnect substrate in the present technology is normally a printed circuit board. It should be noted that this model does not include extemal support microelectronic devices required for magnetic bubble memory operation. The model is based on Reference 33. The general form of the fallure rate model is:

$$
\lambda_{p}=\lambda_{1}+\lambda_{2} \text { Failures/ } 10^{6} \text { Hours }
$$

where:
$\lambda_{1}=$ Failure Rate of the Control and Detection Structure
$\lambda_{1}=\pi_{\mathrm{Q}}\left[N_{\mathrm{C}} \mathrm{C}_{11} \pi_{\mathrm{T} 1} \pi_{\mathrm{W}}+\left(\mathrm{N}_{\mathrm{C}} \mathrm{C}_{21}+\mathrm{C}_{2}\right) \pi_{\mathrm{E}}\right] \pi_{\mathrm{D}} \pi_{\mathrm{L}}$
$\lambda_{2}=$ Failure Rate of the Memory Storage Area
$\lambda_{2}=\pi_{Q} N_{C}\left(C_{12} \pi_{T 2}+C_{22} \pi_{E}\right) \pi_{L}$

Device Complexity Failure Rates for Control and Detection Structure - C_{11} and C_{21}

$$
\begin{aligned}
& C_{11}=.00095\left(N_{1}\right) \cdot 40 \\
& C_{21}=.0001\left(N_{1}\right) .226
\end{aligned}
$$

$N_{1}=$ Number of Dissipative Elements on a Chip (gates, detectors, generators, etc.), $\mathrm{N}_{1} \leq 1000$

MIL-HDBK-217F

5.7 MICROCIRCUIT, MAGNETIC BUBBLE MEMORIES

Device Complexity Failure Rates for Memory Storage Stnucture - C_{12} and C_{22}
$C_{12}=.00007\left(N_{2}\right)^{3}$
$C_{22}=.00001\left(\mathrm{~N}_{2}\right)^{3}$
$N_{2}=$ Number of Bits, $N_{2} \leq 9 \times 10^{6}$

All Other Model Parameters

Parameter	Section
C_{2}	5.9
$\pi_{E}, \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$	5.10

Temperature Factor For All Microcircuits - π T T									
	TIL ASTM. CML HTLL FTM OTL, ECL, ALSTLL	F. LTTL, STTL	$\begin{aligned} & \text { BiCMOS, } \\ & \text { LSTR } \end{aligned}$	III, I'L, ISL	Drgita MOSS, Vhsic cmios	Linear (Bipolar \& MOS)	Mamories (Bipoter 1 mos. MMOS	Gade manc Acifve Denices, TTA	Galle Dightal Active Devices, K_{TA}
$\begin{aligned} & \mathrm{Ea}(\mathrm{eV}) \rightarrow \\ & \left.\mathrm{T}_{\mathrm{f}}{ }^{\circ} \mathrm{C}\right) \end{aligned}$. 4	. 45	. 5	. 6	. 35	. 65	. 6	- 1.6	- 1.4
25	. 10	10	.10	10	. 10	. 10			
30 35	. 13	. 13	14	. 15	. 13	. 15	. 15	3. $0.40 E-09$	1.00E-08
35 40	. 17	. 18	. 19	21	. 16	. 23	. 21	2.10E-00	5. $20 \mathrm{E}-08$
45	. 21	${ }^{23}$. 24	. 31	. 19	. 34	. 31	6.20E00	1.40E-07
50	. 33	. 39	. 34	. 43	. 24	49	. 43	1.30E-07	$3.105-07$
55	. 42	. 50	. 45	8.61	28 35	. 71	. 61	2.00E-07	6. 60 E-07
60	. 51	. 63	. 77	1.2	. 42	1.0	1.8	6.70EE07	1.50E.06
65	. 63	. 80	1.0	1.6	. 50	2.0	1.2	1.50E-08	3.10E-08
70	. 77	1.0	1.3	2.1	. 60	2.8	2.1	C.COE-05	1.30E-05
75	. 94	1.2	1.6	2.0	. 71	3.8	2.9	1.40E-08	2.50E-05
80 85	1.1	1.5	2.1	3.8	. 84	5.2	3.0	2.90E-06	$4.00 \mathrm{E}-05$
90	1.6	2.3	2.15	5.0	. 98	7.0	5.0	6.70E-08	9.40E.05
${ }^{\circ}$	1.0	2.8	4.1	6.6 8.5	1.1	${ }_{12} 9$	8.6 8.5	1.10E-04	1.70E-04
100	2.3	3.4	5.0	11	1.5	16	$1{ }^{8.5}$	2.10E-04 4.00E-04	3. $3.20 \mathrm{E}-04$
105	2.7	4.1	6.2	14	1.8	21	14	7.50E-04	8.00E-03
110	3.2	4.8	7.5	18	2.1	28	18	$1.40 \mathrm{E}-03$	$1.60 \mathrm{E}-03$
115 120	3.7	5.8	0.2	23	2.4	35	23	$2.40 \mathrm{E}-03$	3.10E-03
120 125	1.3	6.9	11	28	2.7	45	28	4.30E-03	5.30E-03
130	15.8	0.2 0.6	13	35	3.1	50	35	$7.50 \mathrm{E}-03$	$0.00 E^{-03}$
135	6.7	11	19	54	3.5	73	4	1.30E-02	1.50E-02
140	7.7	13	23	67	4.4	120	${ }_{6}^{4}$	$2.20 \mathrm{E}-02$	$2.40 \mathrm{E}-02$
145	10.8	15	27	82	8.0	140		S.10E-02	3.00E-02
150	110	18	32	100	8.6	180	100	6.10EE02 $1.00 E-01$	6.30EE-02 $1.00 \mathrm{E}-01$
155	11	20	37	120	6.3	220	120	$1.60 \mathrm{E}-01$	1.60E-01
160 165	13	24 24	43 50	150	7.0	270	150	$2.60 \mathrm{E}-01$	$2.40 \mathrm{E}-01$
170	113	31	59	210	8.7	330 400	180	4.10 E .01	3.70E-01
175	11	35	60	250	0.6	480	250 250	S.40EE1	S.70E-01

5.9 MICROCIRCUITS, C_{2} TABLE FOR ALL

Package Failure Rate for all Microcircuits - C_{2}

Package Type					
Number of Functional Pins, N_{p}	Hermetic: DIPs w/Solder or Weld Seal, Pin Grid Array (PGA) ${ }^{1}$, SMT (Leaded and Nonleaded)	DIPs with Glass Seal ${ }^{2}$	Flatpacks with Axial Leads on 50 Mil Centers ${ }^{3}$	Cans ${ }^{4}$	Nonhermetic: DIPs, PGA, SMT (Leaded and Nonleaded) ${ }^{5}$
3	. 00092	. 00047	. 00022	. 00027	. 0012
4	. 0013	. 00073	. 00037	. 00049	. 0016
6	. 0019	. 0013	. 00078	. 0011	. 0025
8	. 0026	. 0021	. 0013	. 0020	. 0034
10	. 0034	. 0029	. 0020	. 0031	. 0043
12	. 0041	. 0038	. 0028	. 0044	. 0053
14	. 0048	. 0048	. 0037	. 0060	. 0062
16	. 0056	. 0059	. 0047	. 0079	. 0072
18	. 0064	. 0071	. 0058		. 0082
22	. 0079	. 0096	. 0083		. 010
24	. 0087	. 011	. 0098		. 011
28	. 010	. 014			. 013
36	. 013	. 020			. 017
40	. 015	. 024			. 019
64 80	. 025	. 048			. 032
128	. 053				. 068
180	. 076				. 098
224	. 097				. 12

1. $C_{2}=2.8 \times 10^{-4}\left(\mathrm{~N}_{\mathrm{p}}\right)^{1.08}$
2. $C_{2}=3.0 \times 10^{-5}\left(N_{D}\right)^{1.82}$
3. $C_{2}=3.6 \times 10^{-4}\left(N_{p}\right)^{1.08}$
4. $\quad C_{2}=9.0 \times 10^{-5}\left(\mathrm{~N}_{\mathrm{p}}\right)^{1.51}$
5. $\quad \mathrm{C}_{2}=3.0 \times 10^{-5}\left(\mathrm{~N}_{\mathrm{p}}\right)^{2.01}$

NOTES:

1. SMT: Surface Mount Technology
2. DIP: Dual In-Line Package
3. If DIP Seal type is unknown, assume glass
4. The package failure rate $\left(\mathrm{C}_{2}\right)$ accounts for failures associated only with the package itself.

Failures associated with mounting the package to a circuit board are accounted for in Section 16, Interconnection Assemblies.

5.10 MACROCIRCUITS, π_{E}, λ_{L} AND π_{Q} TABLES FOR ALL

Environment Factor - π_{E}	
Environment π_{E} G_{B} .50 G_{F} 2.0 G_{M} 4.0 N_{S} 4.0 N_{U} 6.0 $A_{I C}$ 4.0 $A_{M F}$ 5.0 $A_{U C}$ 5.0 $A_{U F}$ 8.0 $A_{\text {RW }}$ 8.0 S_{F} .50 M_{F} 5.0 M_{L} 12 C_{L} 220	

Learning Factor - π_{L}

Years in Production, Y	π_{L}
5.1	2.0
.5	1.8
1.0	1.5
1.5	1.2
≥ 2.0	1.0

$\pi_{L}=.01 \exp (5.35-.35 Y)$
$\mathrm{Y}=$ Years generic device type has been in production

Quality Factors - π_{0}	
Description	π_{0}
Clans SCatecorios: 1. Procured in full accordance with MIL-M-38510, Class S requirements. 2. Procured in tull accordance with Mil-1-38535 and Appendix B therewo (Class U). 3. Hytrids: (Procured to Class S requirements (Cuality Lovel K) of Mull-H38534.	. 25
Class B Categories: 1. Procured in full accordance with MIL-M-38510, Class B requirements. 2. Procured in full accordance with MIL-I-38535, (Class Q). 3. Hybrids: Procured to Class B requirements (Quality Level H) of MIL-H-38534.	1.0
Class B-1Categon: Fully compliant with all requirements of paragraph 1.2.1 of MiL-STD-883 and procured to a MiL drawing. DESC drawing or other govemment approved documentation. (Does not include hybrids). For hybrids use custom screening section below.	2.0

MIL-HDBK-217F

5.10 MICROCIRCUITS, π_{E}, π_{L} AND π_{Q} TABLES FOR ALL

Cually Factors (cont'd): π_{Q} Calculation for Custom Screening Programs

MIL-HDBK-217F

5.11 MICROCIRCUITS, T」 DETERMINATION, (ALL EXCEPT HYBRIDS)

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipment. Device junction temperature is then calculated with the following relationship:

$$
T_{J}=T_{C}+\theta_{J C} P
$$

$T_{J}=$ Worst Case Junction Temperature ${ }^{\circ} \mathrm{C}$).
$T_{C}=$ Case Temperature $\left({ }^{\circ} \mathrm{C}\right)$. In not avallable, use the following defaull table.

Default Case Temperature (T_{C}) for all Environments

Environment	G_{B}	G_{F}	G_{M}	N_{S}	N_{U}	$A_{1 C}$	$A_{I F}$	$A_{U C}$	$A_{U F}$	$A_{P W}$	S_{F}	M_{F}	M_{L}	C_{L}
$T_{C}\left({ }^{\circ} C\right)$	35	45	50	45	50	60	60	75	75	60	35	50	60	45

$\theta_{\mathrm{JC}}=$ Junction-to-case thermal resistance $\left({ }^{\circ} \mathrm{C}\right.$ watt) for a device soldered into a printed circuit board. If $\theta_{J C}$ is not available, use a value contained in a specification for the closest equivalent device or use the following table.

Package Type (Ceramic Only)	Die Area $>14,400$ mil $^{2} \theta_{\mathrm{JC}}$ $\left({ }^{\circ} \mathrm{CN}\right)$	Die Area $\leq 14,400 \mathrm{mil}^{2}$ $\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{CM}\right)$
Dual-In-Lime	11	28
Flat Package	10	22
Chip Carrier	10	20
Pin Grid Array	10	20
Can	-	70

$P=$ The maximum power dissipation realized in a system application. If the applied power is not available, use the maximum power dissipation from the specification for the closest equivalent device.

MIL-HDBK-217F

5.12 MICROCIRCUITS, TJ DETERMINATION, (FOR HYBRIDS)

This section describes a method for estimating junction temperature (T_{j}) for integrated circuit dice mounted in a hybrid package. A hybrid is normally made up of one or more substrate assemblies mounted within a sealed package. Each substrate assembly consists of active and passive chips with thick or thin film metallization mounted on the substrate, which in turn may have multiple layers of metallization and dielectric on the surface. Figure $5-1$ is a cross-sectional view of a hybrid with a single multi-layered substrate. The layers within the hybrid are made up of various materials with different thermal characteristics. The table following Figure 5-1 provides a list of commonly used hybrid materials with typical thicknesses and corresponding thermal conductivtiles (K). If the hybrid imemal structure cannot be determined, use the following defaut vabues for the temperature rise from case to junction: microcircuits, $10^{\circ} \mathrm{C}$; transistors, $25^{\circ} \mathrm{C}$; diodes, $20^{\circ} \mathrm{C}$. Assume capacitors are at T_{C}.

Figure 5-1: Cross-sectional View of a Hybrid with a Single Mult-Layered Substrate

MIL-HDBK-217F

5.12 MICROCIRCUITS, TJ DETERMINATION, (FOR HYBRIDS)

Typical Hyprid Characteristics

Material	Typical Usage	Typical Thickness, L_{i} (in.)	Feature From Figure 5-1	$\begin{aligned} & \text { Thermal } \\ & \text { Conductivity, } \\ & K_{i} \\ & \left(\frac{W / i^{2}}{{ }^{\circ} \mathrm{C} / \mathrm{in}}\right) \end{aligned}$	$\begin{gathered} \left(\frac{1}{K_{i}}\right)\left(L_{i}\right) \\ \left(i n^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$
Silicon	Chip Device	0.010	A	2.20	. 0045
GaAs	Chip Device	0.0070	A	. 76	. 0092
Aut Eutectic	Chip Attach	0.0001	B	6.9	. 000014
Solder	Chip/Substrate Attach	0.0030	B/E	1.3	. 0023
Epoxy (Dieleciric)	Chip/Substrate Âtiach	0.00035	B/E	. 0060	. 58
Epoxy (Conductive)	Chip Attach	0.0035	B	. 15	. 023
Thick Firm Dielectric	Glass Insulating Layer	0.0030	C	. 66	. 0045
Alumina	Substrate, MHP	0.025	D	. 64	. 039
Beryllium Oxide	Substrate, PHP	0.025	D	6.6	. 0038
Kovar	Case, mip	0.020	F	. 42	. 048
Aluminum	Case, MHP	0.020	F	4.6	. 0043
Copper	Case, PHP	0.020	F	9.9	. 0020

NOTE: MHP: Multichip Hybrid Package, PHP: Power Hybrid Package (Pwr: $\mathbf{2} \mathbf{2 W}$, Typically)

$$
\theta_{J C}=\frac{\sum_{i=1}^{n}\left(\frac{1}{K_{i}}\right)\left(L_{i}\right)}{A}
$$

$n=$ Number of Material Layers
$K_{i}=$ Thermal Conductivity of $i^{\text {ith }}$ Material $\left(\frac{\mathrm{W} / \mathrm{in}^{2}}{{ }^{\circ} \mathrm{C} / \mathrm{in}}\right)$ (User Provided or From Table)
$L_{i}=$ Thickness of $i^{\text {th }}$ Material (in) (User Provided or From Table)
$\mathrm{A}=$ Die Area ($\mathrm{in}^{\mathbf{2}}$). If Die Ârea cannot be readily determined, estimate as follows:
$A=\left[.00278\right.$ (No. of Die Active Wire Terminals) $+.0417^{2}{ }^{2}$
Estimate T_{J} as Follows:

$$
T_{J}=T_{C}+.9\left(\theta_{J C}\right)\left(P_{D}\right)
$$

$T_{C}=$ Hybrid Case Temperature $\left({ }^{\circ} \mathrm{C}\right)$. If unknown, use the T_{C} Default Table shown in Section 5.11.
$\theta_{\mathrm{JC}}=$ Junction-to-Case Thermal Resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$) (As determined above)
$P_{D}=$ Die Power Dissipation (W)

MIL-HDBK-217F

5.13 MUCROCIRCUITS, EXAMPLES

Example 1: CMOS Digital Gate Array

Given: A CMOS digital timing chip (4046) in an airbome inhabited cargo application, case temperature $48^{\circ} \mathrm{C}, 75 \mathrm{~mW}$ power dissipation. The device is procured with normal manufacturers screening consisting of temperature cyciling, constant acceleration, electrical testing, seal test and extemal visual inspection, in the sequence given. The component manufacturer also pertorms a B-tevel bum-in followed by electrical testing. All screens and tests are periormed to the applicable MIL-STD-883 screening method. The package is a 24 pin ceramic DIP with a glass seal. The device has been manufactured for several years and has 1000 transistors.

$$
\lambda_{p}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.1
$$

C_{1}	$=.020$	1000 Transistors $\boldsymbol{\sim} 250$ Gates, MOS C ${ }_{1}$ Table, Digital Column
π_{T}	$=.29$	Determine T_{J} from Section 5.11
		$\mathrm{T}_{J}=48^{\circ} \mathrm{C}+\left(28^{\circ} \mathrm{C} M(.075 \mathrm{~W})=50^{\circ} \mathrm{C}\right.$
		Determine π_{T} from Section 5.8, Digital MOS Column.
C_{2}	$=.011$	Section 5.9
π_{E}	$=4.0$	Section 5.10
π_{Q}	$=3.1$	Section 5.10
		Group 1 Tests 50 Points Group 3 Tests (B-level) 30 Points
		TOTAL 80 Points
		$\pi_{Q}=2+\frac{87}{80}=3.1$
	$=1$	Section 5.10

$$
\lambda_{p}=[(.020)(.29)+(.011)(4)](3.1)(1)=.15 \text { Failure } / 10^{6} \text { Hours }
$$

Example 2: EEPROM

Given: A 128 K Flotox EEPROM that is expected to have a T_{J} of $80^{\circ} \mathrm{C}$ and experience 10,000 read/write cycles over the life of the system. The part is procured to all requirements of Paragraph 1.2.1, MIL-STD-883, Class B screening level requirements and has been in production for three years. It is packaged in a 28 pin DIP with a glass seal and will be used in an airborne uninhabited cargo application.

$$
\pi_{\mathrm{P}}=\left(C_{1} \pi_{T}+C_{2} \pi_{E}+\lambda_{\text {cyc }}\right) \pi_{Q} \pi_{L} \quad \text { Section } 5.2
$$

$C_{1}=.0034$	Section 5.2
$\pi_{T}=3.8$	Section 5.8
$C_{2}=.014$	Section 5.9

$\pi_{E}=5.0$
$\pi_{Q}=2.0$
$\pi_{\mathrm{L}}=1.0$
$\lambda_{\text {cyc }}=.38$

Section 5.10
Section 5.10
Section 5.10
Section 5.2:
$\lambda_{c y c}=\left[A_{1} B_{1}+\frac{A_{2} B_{2}}{\pi_{Q}}\right] \pi_{E C C}$
$A_{2}=B_{2}=0$ for Flotox
Assume No ECC, π ECC $=1$
$A_{1}=.1,7 \mathrm{~K} \leq \mathrm{C} \leq 15 \mathrm{~K}$ Entry
$\mathrm{B}_{1}=3.8 \quad$ (Use Equation 1 at bottom of B_{1} and B_{2} Table)
$\lambda_{\text {cyc }}=A_{1} B_{1}=(.1)(3.8)=.38$

$$
\lambda_{P}=[(.0034)(3.8)+(.014)(5.0)+.38](2.0)(1)=.93 \text { Failures } / 10^{6} \text { Hours }
$$

Example 3: GaAs MMIC

Given: A MA4GM212 Single Pole Double Throw Switch, DC - 12 GHz, 4 transistors, 4 inductors, 8 resistors, maximum input $P_{D}=30 \mathrm{dbm}, 16$ pin hermetic flatpack, maximum $T_{C H}=145^{\circ} \mathrm{C}$ in a ground benign environment. The part has been manutactured for 1 year and is screened to Paragraph 1.2.1 of MIL-STD-883, Class B equivalent screen.

$$
\lambda_{P}=\left[C_{1} \pi_{T} \pi_{A}+C_{2} \pi_{E}\right] \pi_{L} \pi_{Q} \quad \text { Section } 5.4
$$

$C_{1}=4.5$		Section 5.4, MMIC Table, 4 Active Elements (See Footnote to
$\pi_{T}=.061$		Table)
$\pi_{A}=3.0$	Section 5.8, $T_{J}=T_{C H}=145^{\circ} \mathrm{C}$	
$C_{2}=.0047$	Section 5.4, Unknown Application	
$\pi_{E}=.50$	Section 5.9	
$\pi_{\mathrm{L}}=1.5$	Section 5.10	
$\pi_{\mathrm{Q}}=2.0$	Section 5.10	
$\lambda_{P}=[(4.5)(.061)(3.0)+(.0047)(.5)](1.5)(2.0)=2.5$ Failures $/ 10^{6} \mathrm{Hours}$		

NOTE: The passive elements are assumed to contribute negligibly to the overall device failure rate.

Example 4: Hybrid

Given: A linear multichip hybrid driver in a hermetically sealed Kovar package. The substrate is alumina and there are two thick film dielectric layers. The die and substrate attach materials are conductive epoxy and solder, respectively. The application environment is naval unsheltered, $65^{\circ} \mathrm{C}$ case temperature and the device has been in production for over two years. The device is

MIL-HDBK-217F

5.13 MICROCIRCUITS, EXAMPLES

screened to MIL-STD-883, Method 5008, in accordance with Table VIII, Class B requirements. The hybrid contains the following components:

Active Components: 1 - LM106 Bipolar Comparator/Buffer Die (13 Transistors)
1 - LM741A Bipolar Operational Amplifier Die (24 Transistors)
2 - Si NPN Transistor
2 - Si PNP Transistor
2 - Si General Purpose Diodes
Passive Components: 2 - Ceramic Chip Capacitors
17 - Thick Film Resistors

$$
\lambda_{P}=\left[\sum N_{C} \lambda_{C}\right]\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{Q} \pi_{L} \quad \text { Section } 5.5
$$

1. Estimate Active Device Junction Temperatures

If limited information is available on the specific hybrid materials and construction characteristics the default case-to-junction temperature rises shown in the introduction to Section 5.12 can be used. When detailed information becomes available the following Section 5.12 procedure should be used to determine the junction-to-case (θ_{JC}) thermal resistance and T_{J} values for each component.
$\theta_{J C}=\frac{\sum_{i=1}^{n}\left(\frac{1}{K_{i}}\right)\left(L_{i}\right)}{A}$
(Equation 1)

Layer	Figure 5-1 Feature	$\left(\begin{array}{l}\left.\frac{1}{K_{i}}\right)\left(L_{i}\right) \\ \left(\mathrm{in}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}\right)\end{array}\right.$ Silicon Chip Conductive Epoxy Two Dielectric Layers Alumina Substrate Solder Substrate Attachment Kovar Case $\quad \mathrm{B}$

$A=$ Die Area $=[.00278 \text { (No. Die Active Wire Terminals) }+.0417]^{2}$
(Equation 2)
$T_{J}=T_{C}+\theta_{J C} P_{D} \quad$ (Equation 3)

	LM106	LM741A	Si NPN	Si PNP	Si Diode	Source
No. of Pins	8	14	3	3	2	Vendor Spec. Sheet
Power Dissipation, $P_{D}(W)$. 33	. 35	. 6	. 6	. 42	Circuit Analysis
Area of Chip (in. ${ }^{2}$)	. 0041	. 0065	. 0025	. 0025	. 0022	Equ. 2 Above
$\theta^{\text {JC }}$ (${ }^{\circ} \mathrm{CM}$)	30.8	19.4	50.3	50.3	56.3	Equ. 1 Above
$\mathrm{T}_{\mathbf{j}}\left({ }^{\circ} \mathrm{C}\right)$	75	72	95	95	89	Equ. 3 Above

2. Calculate Failure Rates for Each Component:
A) LM106 Die, 13 Transistors (from Vendor Spec. Sheet)

$$
\lambda_{P}=\left[C_{1} \pi_{T}+C_{2} \pi_{E}\right] \pi_{Q} \pi_{L}
$$

Section 5.1
Because $\mathrm{C}_{2}=0$;
$\lambda_{\mathrm{P}}=\mathrm{C}_{1} \pi_{\mathrm{T}} \pi_{\mathrm{Q}} \pi_{\mathrm{L}} \quad \pi_{\mathrm{T}}:$ Section $5.8 ; \pi_{\mathrm{Q}}, \pi_{\mathrm{L}}$ Default to 1.0
$=(.01)(3.8)(1)(1)=.038$ Failures $/ 10^{6}$ Hours
B) LM741 Die, 23 Transistors. Use Same Procedure as Above.

$$
\lambda_{p}=C_{1} \pi_{T} \pi_{Q} \pi_{L}=(.01)(3.1)(1)(1)=.031 \text { Failures } / 10^{6} \text { Hours }
$$

C) Silicon NPN Transistor, Rated Power $=5 \mathrm{~W}$ (From Vendor Spec. Sheet), $\mathrm{V}_{\text {CE }}{ }^{\mathcal{N}_{\text {CEO }}}=.6$, Linear Application

$$
\begin{aligned}
\lambda_{P} & =\lambda_{b} \pi_{T} \pi_{A} \pi_{R} \pi_{S} \pi_{Q} \pi_{E} \quad \text { Section 6.3; } \pi_{Q}, \pi_{E} \text { Default to } 1.0 \\
& =(.00074)(3.9)(1.5)(1.8)(.29)(1)(1) \\
& =.0023 \text { Faihures } / 10^{6} \text { Hours }
\end{aligned}
$$

D) Silicon PNP Transistor, Same as C.

$$
\lambda_{p}=.0023 \text { Failures } / 10^{6} \text { Hours }
$$

E) Silicon General Purpose Diode (Analog), Voltage Stress $=60 \%$, Metallurgically Bonded Construction.

$$
\begin{aligned}
\lambda_{P} & =\lambda_{D} \pi_{T} \pi_{S} \pi_{C} \pi_{Q} \pi_{E} \\
& =(.0038)(6.3)(.29)(1)(1)(1) \\
& =.0069 \text { Failures } / 10^{6} \text { Hours }
\end{aligned}
$$

MIL-HDBK-217F

5.13 MICROCIRCUITS, EXAMPLES
F) Ceramic Chip Capacinor, Voltage Stress $=50 \%$,
$T_{A}=T_{\text {CASE }}$ for the Hybrid, $1340 \mathrm{pF}, 125^{\circ} \mathrm{C}$ Rated Temp.

$$
\begin{aligned}
\lambda_{P} & =\lambda_{D} \pi_{C V} \pi_{Q} \pi_{E} \\
& =(.0028)(1.4)(1)(1) \\
& =.0039 \text { Failures } / 10^{6} \text { Hours }
\end{aligned}
$$

G) Thick Film Resistors, per instuctions in Section 5.5, the contribution of these devices is considered insignificant relative to the overall mybrid faiture rate and they may be ignored.

Oyerall Hytrid Part Faikure Rate Calculation:

$$
\begin{array}{ll}
\lambda_{P}=\left[\sum N_{C} \lambda_{C}\right]\left(1+.2 \pi_{E}\right) \pi_{F} \pi_{Q} \pi_{L} & \\
\pi_{E}=6.0 & \text { Section } 5.10 \\
\pi_{F}=5.8 & \text { Section } 5.5 \\
\pi_{Q}=1 & \text { Section } 5.10 \\
\pi_{L}=1 & \text { Section } 5.10 \\
\lambda_{P}= & \\
& \\
& +(1)(.038)+(1)(.0069)+(2)(.0039)](1+.2(6.0))(5.8)(1)(1) \\
\lambda_{p}= & 1.3 \text { Failures } / 10^{6} \text { Hours }
\end{array}
$$

MIL-HDBK-217F

6.0 DISCRETE SEMICONDUCTORS, INTRODUCTION

The semiconductor transistor, diode and opto-electronic device sections present the fallure rates on the basis of device type and construction. An analytical model of the failure rate is also presented for each device category. The various types of discrete semiconductor devices require different falure rate models that vary to some degree. The modets apply to single devices unless otherwise noted. For mulliple devices in a single package the hybrid model in Section 5.5 should be used.

The applicable MIL specification for transistors, and optoelectronic devices is MIL-S-19500. The quality levels (JAN, JANTX, JANTXV) are as defined in MIL-S-19500.

The temperature factor (x_{T}) is based on the device junction temperature. Junction temperature should be computed based on worse case power (or maximum power dissipation) and the device function to case thermal resistance. Determination of junction temperatures is explained in Section 6.14.

Reference 28 should be consulted for further detailed information on the models appearing in this section.

MIL-HDBK-217F

6.1 DIODES, LOW FREQUENCY

SPECIFICATION	DESCRIPTION
MIL-S-19500	Low Froquency Diodes: General Puppose Anabog, Suitching,
	Fast Recovery, Power Rectifier, Transient Suppressor, Currem
	Regulator, Vokage Regulator, Voltage Reference

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{S} \pi_{C} \pi_{Q} \pi_{E} \text { Failures/ } 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$	
Diode Type/Application λ_{b} General Purpose Analog .0038 Switching .0010 Power Recitijier, Fast Recovery .069 Power Rectifier/Schottky .0030 Fower Diode $.0050 /$ Power Rectitier with Junction High Voltage Stacks .0013 Transient SuppressorNaristor Current Regulator Vothage Regulator and Voltage .0034 Reference (Avalanche and Zener)	

Temperature Factor - π_{T}
(General Purpose Ânaiog, Switching, Fast Recovery.
Powor Rectifier, Transient Suppressor)

$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	$\pi_{\text {T }}$	$\left.\mathrm{T}_{\mathrm{J}}{ }^{\circ} \mathrm{C}\right)$	π_{T}
25	1.0	105	9.0
30	1.2	110	10
35	1.4	115	11
40	1.6	120	12
45	1.9	125	14
50	2.2	130	15
55	2.6	135	16
60	3.0	140	18
65	3.4	145	20
70	3.9	150	21
75	4.4	155	23
80	5.0	160	25
85	5.7	165	28
90	6.4	170	30
95	7.2	175	32
100	8.0		
$\pi_{T}=\exp \left(\cdot 3091\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$			
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right.$)			

Temperature Factor - π_{T}
(Vohage Regulator, Voltage Reference,

$T_{j}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}	$T_{J}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}
25	1.0	105	3.9
30	1.1	110	4.2
35	1.2	115	4.5
40	1.4	120	4.8
45	1.5	125	5.1
50	1.6	130	5.4
55	1.8	135	5.7
60	2.0	140	6.0
65	2.1	145	6.4
70	2.3	150	6.7
75	2.5	155	7.1
80	2.7	160	7.5
85	3.0	165	7.9
90	3.2	170	8.3
95	3.4	175	6.7
100	3.7		

Electrical Stress Factor - π_{S}	
Stress	$\pi_{\text {S }}$
Transient Suppressor, Voltage Regulator, Voltage Reference, Current Regulator	1.0
All Others: $\begin{aligned} & V_{\mathrm{s}} \leq .30 \\ & .3<V_{\mathrm{s}} \leq .40 \\ & .4<V_{\mathrm{s}} \leq .50 \\ & .5<V_{\mathrm{s}} \leq .60 \\ & .6<V_{\mathrm{s}} \leq .70 \\ & .7<V_{\mathrm{s}} \leq .80 \\ & .8<V_{\mathrm{s}} \leq .90 \\ & .9<V_{\mathrm{s}} \leq 1.00 \end{aligned}$	0.054 0.11 0.19 0.29 0.42 0.58 0.77 1.0
For All Except Transient Suppressor, Voltage Regulator, VoHage Reference, or Current Regulator $\begin{array}{ll} \pi_{s}=.054 & \left(V_{s} \leq .3\right) \\ \pi_{s}=V_{s} 2.43 & \left(.3<V_{s} \leq 1\right) \end{array}$ $v_{s}=\text { Voltage Stress Ratio }=\frac{\text { Voltage Applied }}{\text { Voltage Rated }}$ Voltage is Diode Reverse Voltage	

Contact Construction Factor $-\pi_{\mathrm{C}}$

Contact Construction	π_{C}
Metallurgically Bonded	1.0
Non-Metallurgically Bonded and Spring Loaded Contacts	2.0

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality π_{Q} JANTXV 0.7 JANTX 1.0 JAN 2.4 Lower 5.5 Plastic 8.0	

Environment Factor $-\pi_{E}$

Environment	π_{E}
G_{B}	1.0
G_{F}	6.0
G_{M}	9.0
N_{S}	9.0
N_{U}	19
$A_{I C}$	13
$A_{I F}$	29
$A_{U C}$	20
$A_{U F}$	43
$A_{R W}$	24
S_{F}	.50
M_{F}	14
M_{L}	32
C_{L}	320

MIL-HDBK-217F
6.2 DIODES, HIGH FREQUENCY (WICROWAVE, RF)

SPECIFICATION MIL-S-19500

DESCRIPTION

Si mipatt; Bum Effect, Gunn; Tunnel, Back; Mixer, Detector, PIN, Schottky; Varactor, Step Recovery

$$
\lambda_{p}=\lambda_{D} \pi_{T} \pi_{A} \pi_{R} \pi_{Q} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{t}	
Diode Type	λ_{b}
Si MPATT (335 GH (z)	. 22
Gunn/Bulk Etfoct	. 18
Tunnel and Back (including	0023
PIN	. 0081
Schottky Barrier (Including	
Detectors) and Point Contact (200 NHzz S Frequency 35 GHz)	
	$.027$

Temperature Factor - π_{T} (All Typos Excopt IMPATT)			
$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}	$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	${ }^{\pi}$ T
25	1.0	105	4.4
30	1.1	110	4.8
35	1.3	115	5.1
40	1.4	120	5.5
45	1.6	125	5.9
50	1.7	130	6.3
55	1.9	135	6.7
60	2.1	140	7.1
65	2.3	145	7.6
70	2.5	150	8.0
75	2.8	155	8.5
80	3.0	i60	9.0
85	3.3	165	9.5
90	3.5	170	10
95	3.8	175	11
100	4.1		
		$\frac{1}{+27}$))
	on	${ }^{(\circ}{ }^{\circ} \mathrm{C}$	

Temperature Factor- π_{T} (MPPATI)			
$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	$\pi_{\text {T }}$	$\left.\mathrm{T}_{\mathrm{j}}{ }^{\circ} \mathrm{C}\right)$	π_{T}
25	1.0	105	42
30	1.3	110	50
35	1.8	115	60
40	2.3	120	71
45	3.0	125	84
50	3.9	130	99
55	5.0	135	120
60	6.4	140	140
65	8.1	145	160
70	10	150	180
75	13	155	210
80	16	160	250
85	19	165	288
90	24	170	320
95	29	175	370
100	35		
	(-5	$\frac{1}{+273}$	$\frac{1}{98}$))
${ }^{\top} \mathrm{J}$	cion	(${ }^{\circ} \mathrm{C}$)	

Application Factor $-\pi_{\mathrm{A}}$	
Diodes Application π_{A} Varactor, Vohage Control .50 Varactor, Multiplier 2.5 All Other Diodes 1.0	

MI-HDBK-217F
6.2 DIODES, HIGH FREQUENCY (MICROWAVE, RF)

Power Rating Factor $\cdot \pi_{R}$	
Rated Power, Pr (Watts)	π_{R}
$\begin{aligned} & \text { PIN Diodes } \\ & \qquad \begin{array}{l} \operatorname{Pr} \leq 10 \\ 10<\operatorname{Pr} \leq 100 \\ 100<P_{r} \leq 1000 \\ 1000<P_{r} \leq 3000 \end{array} \end{aligned}$	$\begin{gathered} .50 \\ 1.3 \\ 2.0 \\ 2.4 \end{gathered}$
All Other Diodes	1.0
PIN Diodes $\pi_{R}=$ All Other Diodes $\pi_{R}=$	$\left(P_{r}\right)-.25$

Quality Factor - π_{Q} (Schotrky)	
Quality*	π
JANTXV	. 50
JANTX	1.0
JAN	1.8
Lower	2.5
Plastic	-
For high frequ MIL-S-195 defined as requiremen	ot specified to lasses are me

Quality Factor $-\pi_{Q}$ (All Types Except Schottky)	
Quality ${ }^{\text {* }}$	$\pi_{\text {a }}$
JANTXV	. 50
JANTX	1.0
JAN	5.0
Lower	25
Plastic	50
For high fr MIL-S. 195 requireme	pectified to as are

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	5.0
N_{S}	4.0
N_{U}	11
A_{1}	4.0
$A_{I F}$	5.0
$A_{U C}$	7.0
$A_{U F}$	12
$A_{R W}$	16
S_{F}	.50
M_{F}	9.0
M_{L}	24
C_{L}	250

6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

SPECIFICATION MIL-S-19500

DESCRIPTION
NPN (Frequency <200 MHz)
PNP (Frequency < 200 MHz)

$$
\lambda_{P}=\lambda_{D} \pi_{T} \pi_{A} \pi_{R} \pi_{S} \pi_{Q} \pi_{E}
$$

Failures $/ 10^{6}$ Hours
Base Fallure Rate $-\lambda_{\mathrm{B}}$

Type	λ_{b}
NPN and PNP	.00074

Application Factor $-\pi_{\mathrm{A}}$

Application	π_{A}
Linear Amplification	1.5
Switching	.70

$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	$\pi_{\text {T }}$	$\left.\mathrm{T}^{(10}{ }^{\circ} \mathrm{C}\right)$	π_{T}
25	1.0	105	4.5
30	1.1	110	4.8
35	1.3	115	5.2
40	1.4	120	5.6
45	1.6	125	5.9
50	1.7	130	6.3
55	1.9	135	6.8
60	2.1	140	7.2
65	2.3	145	7.7
70	2.5	150	8.1
75	2.8	155	8.6
80	3.0	160	9.1
85	3.3	165	9.7
90	3.6	170	10
95	3.9	175	11
100	4.2		
$\pi_{T}=\exp \left(-2114\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$			
$\mathrm{T}_{\mathrm{J}}=$ Junction Temperature (${ }^{\circ} \mathrm{C}$)			

Rated Power ($\mathrm{Pr}_{\text {r }}$, Watts)	$\pi_{\text {R }}$
Pr $\leq .1$. 43
$\mathrm{P}_{\mathrm{r}}=.5$. 77
$\mathrm{Pr}_{\mathrm{r}}=1.0$	1.0
$\mathrm{Pr}_{\mathrm{r}}=5.0$	1.8
$\mathrm{Pr}_{\mathrm{r}}=10.0$	2.3
$\mathrm{Pr}_{\mathrm{r}}=50.0$	4.3
$\mathrm{Pr}_{\mathrm{r}}=100.0$	5.5
$\mathrm{Pr}_{\mathrm{r}}=500.0$	10
$\pi_{R}=.43 \quad R a$	Rated Power 5.1W
$\pi_{R}=\left(P_{r}\right)^{37} \quad R a$	Rated Power > . 1 W

6.3 TRANSISTORS, LOW FREQUENCY, BIPOLAR

Voltage Stress Factor - π_{S}

Applied $V_{C E} /$ Rated $V_{C E O}$	π_{S}
$0<\mathrm{V}_{\mathrm{S}} \leq .3$.11
$.3<\mathrm{V}_{\mathrm{S}} \leq .4$.16
$.4<\mathrm{V}_{\mathrm{S}} \leq .5$.21
$.5<\mathrm{V}_{\mathrm{S}} \leq .6$.29
$.6<\mathrm{V}_{\mathrm{S}} \leq .7$.39
$.7<\mathrm{V}_{\mathrm{S}} \leq .8$.54
$.8<\mathrm{V}_{\mathrm{S}} \leq .9$.73
$.9<\mathrm{V}_{\mathrm{S}} \leq 1.0$	1.0

$\pi_{S} \quad=.045 \exp \left(3.1\left(V_{s}\right)\right) \quad\left(0<V_{S} \leq 1.0\right)$
$\mathrm{V}_{\mathrm{s}}=$ Applied $\mathrm{V}_{\mathrm{CE}} /$ Rated $\mathrm{V}_{\text {CEO }}$
$\mathrm{V}_{\mathrm{CE}}=$ Voltage, Collector to Emitter
$V_{\text {CEO }}=$ Vottage, Collector to Emitter, Base Open

Environment Factor $-\pi_{E}$

Environment	π_{E}
G_{B}	1.0
G_{F}	6.0
G_{M}	9.0
$\mathrm{~N}_{\mathrm{S}}$	9.0
$\mathrm{~N}_{\mathrm{U}}$	19
$\mathrm{~A}_{\mathrm{K}}$	13
$A_{I F}$	29
$A_{U C}$	20
$A_{U F}$	43
$A_{R W}$	24
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	14
M_{L}	32
C_{L}	320

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

MIL-HDBK-217F

6.4 TRANSISTORS, LOW FREQUENCY, SI FET

SPECIFICATION

MIL-S-19500

DESCRIPTION
N -Channel and P-Channel Si FET (Frequency $\leq 400 \mathrm{MHz}$)

$$
\lambda_{D}=\lambda_{b} \pi_{T} \pi_{A} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

Transistor Type	λ_{b}
MOSFET	.012
JFET	.0045

Temperature Factor $-\pi_{T}$
$\pi_{T}-\exp \left(-1925\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$
$T_{J}=$ Junction Temperature (${ }^{\circ} \mathrm{C}$)

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Application (Pr, Rated Output Power)	$\pi_{\text {A }}$
Linear Amplification $\left(P_{r}<2 W\right)$ Small Signal Switching	$\begin{array}{r} 1.5 \\ .70 \\ \hline \end{array}$
Power FETs (Non-linear, $\mathrm{P}_{\mathrm{r}} \geq 2 \mathrm{~W}$) $\begin{aligned} & 2 \leq \mathrm{Pr}_{\mathrm{r}}<5 \mathrm{~W} \\ & 5 \leq \mathrm{Pr}<50 \mathrm{~W} \\ & 50 \leq \mathrm{Pr}_{\mathrm{r}}<250 \mathrm{~W} \\ & \mathrm{Pr}_{\mathrm{r}} \geq 250 \mathrm{~W} \end{aligned}$	$\begin{gathered} 2.0 \\ 4.0 \\ 8.0 \\ 10 \end{gathered}$

Environment Factor - π_{E}

Environment	π_{E}
G_{B}	1.0
G_{F}	6.0
G_{M}	9.0
N_{S}	9.0
N_{U}	19
$A_{I C}$	13
$A_{I F}$	29
$A_{U C}$	20
$A_{U F}$	43
$A_{R W}$	24
S_{F}	.50
M_{F}	14
M_{L}	32
C_{L}	320

SPECIFICATION
MIL-S-19500

DESCRIPTION

Unijunction Transistors

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{\mathrm{T}} \pi_{\mathrm{Q}} \pi_{E} \text { Failures/ } 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

Type	λ_{b}
All Unijunction	.0083

Temperature Factor $-\pi_{T}$				
$\mathrm{~T}_{J}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}	$T_{J}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}	
25	1.0	105	5.8	
30	1.1	110	6.4	
35	1.3	115	6.9	
40	1.5	120	7.5	
45	1.7	125	8.1	
50	1.9	130	8.8	
55	2.1	135	9.5	
60	2.4	140	10	
65	2.7	145	11	
70	3.0	150	12	
75	3.3	155	13	
80	3.7	160	13	
85	4.0	165	14	
90	4.4	170	15	
95	4.9	175	16	
100	5.3			

$\pi_{T}=\exp \left(-2483\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$
$\mathrm{T}_{J}=$ Junction Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	6.0
G_{M}	9.0
N_{S}	9.0
N_{U}	19
$A_{I C}$	13
$A_{I F}$	29
$A_{U C}$	20
$A_{U F}$	43
$A_{R W}$	24
S_{F}	.50
M_{F}	14
M_{L}	32
C_{L}	320

MIL-HDBK-217F

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

SPECIFICATION

M!L-S-19500

DESCRIPTION

Bipolar, Microwave RF Transistor
(Frequency > 200 MHz , Power < 1 W)

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{R} \pi_{S} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Application Note: The model applies to a single die (for multipte die use the hybrid model). The model does apply to ganged transistors on a single die.

Base Failure Rate $-\lambda_{b}$	
Type	λ_{b}
All Types	.18

$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}	$\mathrm{T}_{J}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}
25	1.0	105	4.5
30	1.1	110	4.8
35	1.3	115	5.2
40	1.4	120	5.6
45	1.6	125	5.9
50	1.7	130	6.3
55	1.9	135	6.8
60	2.1	140	7.2
65	2.3	145	7.7
70	2.5	150	8.1
75	2.8	155	8.6
80	3.0	160	9.1
85	3.3	165	9.7
90	3.6	170	10
95	3.9	175	11
100	4.2		
$\pi_{T}=\exp \left(-2114\left(\frac{1}{T_{J}+273} \cdot \frac{1}{298}\right)\right)$			
$T_{j}=$ dunction Temperature (${ }^{\circ} \mathrm{C}$)			

Power Rating Factor - $\boldsymbol{\pi}_{\mathbf{R}}$	
Rated Power (P_{r}, Watts)	$\pi_{\text {R }}$
Pr $\leq .1$. 43
. $1<\operatorname{Pr} \leq .2$. 55
. $2<\operatorname{Pr} \leq .3$. 64
. $3<\mathrm{Pr}_{\mathrm{r}} \leq .4$. 71
. $4<\mathrm{Pr}_{\mathrm{r}} \leq .5$. 77
. $5<\operatorname{Pr} \leqslant .6$. 83
. $6<\operatorname{Pr} \leq .7$. 88
. $7<\mathrm{Pr}^{5} \leq .8$. 92
. $8<\operatorname{Pr} \leq .9$. 96
$\pi_{R}=.43$	
$\pi_{R}=\left(P_{r}\right)^{37}$	
Voltage Stress Factor $-\pi_{\text {s }}$	
Applied VCE/Rated VCEO	$\pi_{\text {s }}$
$0<V_{s} \leq .3$. 11
. $3<\mathrm{V}_{\mathrm{s}} \leq .4$. 16
$.4<V_{\text {s }} \leq .5$. 21
. $5<\mathrm{V}_{\mathrm{s}} \leq .6$. 29
. $6<\mathrm{V}_{\mathrm{s}} \leq .7$. 39
. $7<\mathrm{V}_{\mathrm{s}} \leq .8$. 54
. $8<\mathrm{V}_{5} \leq .9$. 73
. $9<\mathrm{V}_{\mathrm{s}} \leq 1.0$	1.0
$\pi_{s} \quad=.045 \exp \left(3.1\left(V_{s}\right)\right) \quad\left(0<V_{s} \leq 1.0\right)$	
$\mathrm{V}_{\mathrm{s}}=$ Applied $\mathrm{V}_{\text {CE }} /$ Ratod $\mathrm{V}_{\text {CEO }}$	
$V_{\text {CE }}$ - Vohage, Collector to Emitter	
$V_{C E O}=$ Voltage, Collector to Emitter, Base Open	

MIL-HDBK-217F

6.6 TRANSISTORS, LOW NOISE, HIGH FREQUENCY, BIPOLAR

Quality Factor $-\pi_{\mathrm{O}}$	
Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

NOTE: For these devices, JANTXV quality class must inctude IR Scan for die attach and screen tor barrier: layer pinholes on gold metallized devices.

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	5.0
N_{S}	4.0
N_{U}	11
$A_{I C}$	4.0
$A_{H F}$	5.0
$A_{U C}$	7.0
$A_{U F}$	12
$A_{R W}$	16
S_{F}	.50
M_{F}	9.0
M_{L}	24
C_{L}	250

6.7 TRANSISTORS, HIGH POWER, HIGH FREQUENCY, BIPOLAR

SPECIFICATION

MIL-S-19500

DESCRIPTION
Power, Microwave, RF Bipolar Transistors (Average Power $\geq 1 \mathrm{~W}$)

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{A} \pi_{M} \pi_{Q} \pi_{E}
$$

Failures $/ 10^{6}$ Hours
Base Failure Rate - λ_{b}

$\begin{aligned} & \text { Frequency } \\ & (\mathrm{GHz}) \end{aligned}$	Output Power (Watts)									
	1.0	5.0	10	50	100	200	300	400	500	600
≤ 0.5	. 038	. 039	. 040	. 050	. 067	. 12	. 20	. 36	. 62	1.1
1	. 046	. 047	. 048	. 060	. 080	. 14	. 24	. 42	. 74	1.3
2	. 065	. 067	. 069	. 086	. 11	. 20	. 35			
3	. 093	. 095	. 098	. 12	. 16	. 28				
4	. 13	. 14	. 14	. 17	. 23					
5	. 19	. 19	. 20	. 25						

NOTE: Output power refers to the power level for the overall packaged device and not to individual transistors within the package (if more than one transistor is ganged together). The output power represents the power output from the active device and should not account for any duty cycle in pulsed applications. Duty cycle is accounted for when determining π_{A}.

Temperature Factor $-\pi_{T}$ (Gold Metallization)					Temperature Factor - π_{T} (Aluminum Metallization)				
	$V_{s}\left(V_{C E} /{ }^{\text {PV }}\right.$ CES $) ~$				$\mathrm{V}_{\mathrm{s}}\left(\mathrm{V}_{C E} / \mathrm{BV}_{\text {CES }}\right)$				
$\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{C}\right)$	$\leq .40$. 45	. 50	. 55	$\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{C}\right)$	5.40	45	. 50	. 55
≤ 100	. 10	. 20	. 30	. 40	≤ 100	. 38	75	1.1	1.5
110	. 12	. 25	. 37	. 49	110	. 57	1.1	1.7	2.3
120	. 15	. 30	. 45	. 59	120	. 84	1.7	2.5	3.3
130	. 18	. 36	. 54	. 71	130	1.2	2.4	3.6	4.8
140	. 21	. 43	. 64	. 85	140	1.7	3.4	5.1	6.8
150	. 25	. 50	. 75	1.0	150	2.4	4.7	7.1	9.5
160	29	59	. 88	1.2	160	3.3	6.5	9.7	13
170	. 34	. 68	1.0	1.4	170	4.4	8.8	13	18
180	40	79	1.2	1.6	180	5.9	12	18	23
190	45	. 91	1.4	1.8	190	7.8	15	23	31
200	. 52	1.0	1.6	2.1	200	10	20	30	40
$\begin{gathered} \pi_{T}=.1 \\ \pi_{T}=2(\end{gathered}$ v_{s} VCE BVCE	$\begin{aligned} & -29 \\ & \leq .40) \end{aligned}$ 35) \exp $<V_{s} s$	$\frac{1}{T_{J}+}$ 903 BVC ting V tor-E e with (Vol Junctio	$\frac{1}{37^{\prime}}$ 273 (Volts) reakd Short perat)). C)	$\pi_{T}=$. $\pi_{T}=7.55$ v_{s} $V_{C E}$ BVCE T_{J}	$\operatorname{xp}(-5$ s $\leq .40$) -.35) $4<V_{S}$ - $=$ $=$	$\frac{1}{T_{J}+}$ 5794 BVCES ting Vo tor-Em with (Volts) Junction	- $\frac{1}{37}$ 273 (Volts) reakd Shorte peratu	()). C)

Application Factor $-\pi_{\mathrm{A}}$		
Application Duty Factor π_{A} CW N/A 7.6 Pulsed 51% .46 5% 70 10% 1.0 15% 1.3 20% 1.6 25% 1.9 $\geq 30 \%$ 2.2 $\pi_{\mathrm{A}}=7.6, \mathrm{CW}$ $\pi_{\mathrm{A}}=.06$ (Duty Factor \%) +.40, Pulsed		

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0
NOTE: For these devices, JANTXV quality class must include IR Scan for die attach and screen for barrier layer pinholes on gold metallized devices.	

Matching Network Factor - π_{M}		Environment Factor - π_{E}	
		Environment	$\pi_{\text {E }}$
Matching	π_{M}	G_{B}	1.0
Input and Output	1.0	G_{F}	2.0
Input and Output	1.0	G_{M}	5.0
Input	2.0	N_{S}	4.0
None	4.0	N_{u}	11
		$A_{1 C}$	4.0
		$A_{\text {IF }}$	5.0
		${ }^{\text {A }}$ UC	7.0
		${ }^{\text {A }}$ UF	12
		$A_{\text {RW }}$	16
		S_{F}	50
		M_{F}	9.0
		M_{L}	24
		C_{L}	250

MIL-HDBK-217F

6.8 TRANSISTORS, HIGH FREQUENCY, GAAS FET

SPECIFICATION

MIL-S-19500

DESCRIPTION
GaAs Low Noise, Driver and Power FETs (\geq 1GHz)
Failures/ 10^{6} Hours

$\begin{gathered} \text { Operating } \\ \text { Frequency (GHz) } \\ \hline \end{gathered}$			Averag	Power			
	$<.1$. 1	. 5	1	2	4	6
1	. 052	-	-	-	--	--	\cdots
4	. 052	. 054	. 066	. 084	. 14	. 36	. 96
5	. 052	. 083	. 10	. 13	. 21	. 56	1.5
6	. 052	. 13	. 16	. 20	. 32	. 85	2.3
7	. 052	. 20	. 24	. 30	. 50	1.3	3.5
8	. 052	. 30	. 37	. 47	. 76	2.0	
9	. 052	. 46	. 56	. 72	1.2		
10	. 052	. 71	. 87	1.1	1.8		
$\lambda_{b}=.052$			$1 \leq F \leq$				
$\lambda_{\mathrm{b}}=$	429(F)		$4 \leq F \leq$	$\leq P \leq 6$			
F	(GHz)		P	Outpu	er (W		

The average output power represents the power output from the active device and should not account for any duty cycle in pulsed applications.

Temperature Factor - π_{T}			
${ }^{\mathrm{T}} \mathrm{C}$ (${ }^{\circ} \mathrm{C}$)	π_{T}	$\mathrm{T}_{\mathrm{C}}\left({ }^{\circ} \mathrm{C}\right)$	${ }_{T}$
25	1.0	105	24
30	1.3	110	28
35	1.6	115	33
40	2.1	120	38
45	2.6	125	44
50	3.2	130	50
55	4.0	135	58
60	4.9	140	66
65	5.9	145	75
70	7.2	150	85
75	8.7	155	97
80	10	160	110
85	12	165	120
90	15	170	140
95	18	175	150
100	21		
		273	8)
$T_{C}=$	ne	lure (${ }^{\circ} \mathrm{C}$)	

Application Factor $-\pi_{A}$	
Application (P $\leq 6 W$)	π_{A}
All Low Power and Pulsed	1
CW	4
P $=$ Average Output Power (Watts)	

MIL-HDBK-217F

6.8 TRANSISTORS, HIGH FREQUENCY, GaAs FET

Matching Network Factor - π_{M}		Environment Factor - π_{E}	
Matching	π_{M}	Environment	$\pi_{\text {E }}$
Input and Output Input Only		G_{B}	1.0
	1.0	G_{F}	2.0
	2.0	G_{M}	5.0
None	4.0	N_{S}	4.0
		N_{U}	11
Quality Factor - π_{Q}		A_{1}	4.0
		$A_{\text {IF }}$	5.0
Quality	π_{Q}	${ }^{\text {A }}$ UC	7.0
JANTXV	. 50	${ }^{\text {A }}$ UF	12
		$A_{\text {RW }}$	16
JANTX	1.0	S_{F}	. 50
JAN	2.0	M_{F}	7.5
Lower	5.0	M_{L}	24
		C_{L}	250

6.9 TRANSISTORS, HIGH FREQUENCY, SI FET

SPECIFICATION

MIL-S-19500

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E}
$$

Base Faiture Rate $-\lambda_{\mathrm{b}}$	
Transistor Type λ_{b} MOSFET .060 JFET .023	

Temperature Factor - π_{T}			
$\mathrm{T}_{J}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}	$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}
25	1.0	105	3.9
30	1.1	110	4.2
35	1.2	115	4.5
40	1.4	120	4.8
45	1.5	125	5.1
50	1.6	130	5.4
55	1.8	135	5.7
60	2.0	140	6.0
65	2.1	145	6.4
70	2.3	150	6.7
75	2.5	155	7.1
80	2.7	160	7.5
85	3.0	165	7.9
90	3.2	170	8.3
95	3.4	175	8.7
100	3.7		
		$\frac{1}{+273}$	
		(${ }^{\circ}$	

Failures $/ 10^{6}$ Hours
DESCRIPTION
Si FETs (Avg. Power < 300 mW . Freq. > 400 MHz)
Quality Factor $-\pi_{\mathrm{Q}}$

Quality	π_{Q}
JANTXV	.50
JANTX	1.0
JAN	2.0
Lower	5.0

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	5.0
N_{S}	4.0
N_{U}	11
$A_{I C}$	4.0
$A_{I F}$	5.0
$A_{U C}$	7.0
$A_{U F}$	12
$A_{R W}$	16
S_{F}	.50
M_{F}	9.0
M_{L}	24
c_{L}	250

SPECIFICATION
 MIL-S-19500

DESCRIPTION
Thyristors
SCRs, Triacs

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{R} \pi_{S} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Rated Forward Current (Ifrms ${ }^{\text {(Amps) }}$)	π_{R}
$\begin{aligned} & .05 \\ & .10 \\ & .50 \\ & 1.0 \\ & 5.0 \\ & 10 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 70 \\ & 80 \\ & 90 \\ & 100 \\ & 110 \\ & 120 \\ & 130 \\ & 140 \\ & 150 \\ & 160 \\ & 170 \\ & 175 \end{aligned}$	$\begin{gathered} .30 \\ .40 \\ .76 \\ 1.0 \\ 1.9 \\ 2.5 \\ 3.3 \\ 3.9 \\ 4.4 \\ 4.8 \\ 5.1 \\ 5.5 \\ 5.8 \\ 6.0 \\ 6.3 \\ 6.6 \\ 6.8 \\ 7.0 \\ 7.2 \\ 7.4 \\ 7.6 \\ 7.8 \\ 7.9 \end{gathered}$
$\begin{aligned} & \pi_{\mathrm{R}}=\left(L_{\mathrm{rms}}\right)^{40} \\ & \text { frms }=\text { RMS Rated } F \end{aligned}$	nt (Amps)

MIL-HDBK-217F

6.10 THYRISTORS AND SCRS

Voltage Stress Factor $-\pi_{S}$	
V_{S}(Blocking Voltage Applied/ Blocking Voltage Rated)	π_{S}
$V_{S} \leq .30$.10
$.3<V_{S} \leq .4$.18
$.4<V_{S} \leq .5$.27
$.5<V_{S} \leq .6$.38
$.6<V_{S} \leq .7$.51
$.7<V_{S} \leq .8$	
$.8<V_{S} \leq .9$	
$.9<V_{S} \leq 1.0$.65
	1.0
$\pi_{S}=.10$	$\left(V_{s} \leq 0.3\right)$
$\pi_{S}=\left(V_{S}\right)$	$\left(V_{s}>0.3\right)$

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	6.0
G_{M}	9.0
N_{S}	9.0
N_{U}	19
$A_{I C}$	13
$A_{I F}$	29
$A_{U C}$	20
$A_{U F}$	43
$A_{R W}$	24
S_{F}	14
M_{F}	32
M_{L}	320
C_{L}	

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality π_{Q} JANTXV 0.7 JANTX 1.0 JAN 2.4 Lower 5.5 Plastic 8.0	

6.11 OPTOELECTRONICS, DETECTORS, ISOLATORS, EMITTERS

SPECIFICATION MIL-S-19500

DESCRIPTION
 Photodetectors, Opto-isoiaiors, Emitiers

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Base Faiture Rate $-\lambda_{\mathrm{D}}$

Opioeiectronic Type	λ_{B}
Photodetectors	
Photo-Transistor	. 0055
Photo-Diode	. 0040
Opto-Isolators Photodiade Output, Single Device	. 0025
Photatransistor Output, Single Device	. 013
Photodarlington Output, Single Device	. 013
Light Sensitive Resistor, Single Device	. 0064
Photodiode Output, Dual Device	. 0033
Phototransistor Output, Dual Device	. 017
Photodarlington Output, Dual Device	. 017
Light Sensitive Resistor, Dual Device	. 0086
Emitters inirared Light Eminting Diode (iRLD)	. 0013
Light Emitting Diode (LED)	. 00023

Temperature Facior - π_{T}			
$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}	$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}
$\begin{aligned} & 25 \\ & 30 \\ & 35 \\ & 40 \\ & 45 \\ & 50 \\ & 55 \\ & 60 \\ & 65 \\ & 70 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \\ & 1.4 \\ & 1.6 \\ & 1.8 \\ & 2.1 \\ & 2.4 \\ & 2.7 \\ & 3.0 \\ & 3.4 \end{aligned}$	$\begin{array}{r} 75 \\ 80 \\ 85 \\ 90 \\ 95 \\ 100 \\ 105 \\ 110 \\ 115 \end{array}$	$\begin{aligned} & 3.8 \\ & 4.3 \\ & 4.8 \\ & 5.3 \\ & 5.9 \\ & 6.6 \\ & 7.3 \\ & 8.0 \\ & 8.8 \end{aligned}$
T_{1}	$(-2$	$\frac{1}{\jmath+27}$ ture	\hat{y}

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality π_{Q} JANTXV .70 JANTX 1.0 JAN 2.4 Lower 5.5 Plastic 8.0	

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	8.0
N_{S}	5.0
N_{U}	12
$A_{i C}$	4.0
$\hat{A}_{I F}$	6.0
$A_{U C}$	6.0
$A_{U F}$	8.0
$A_{R W}$	17
S_{F}	.50
M_{F}	9.0
M_{L}	24
C_{L}	450

MIL-HDBK-217F

SPECIFICATION

MIL-S-19500

DESCRIPTION
 Alphanumeric Display

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{E} \text { Failures/10 } \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$		
Number of Characters	λ_{b} Segment Display	λ_{b} Diode Array Dispotay
1 whogic Chip	.00043	.00026
2	.00047	.00030
2 w/ogic Chip	.00086	.00043
3	.00090	.00047
3 whogic Chip	.0013	.00060
4	.0013	.00064
4 whogic Chip	.0017	.00077
5	.0022	.00081
6	.0026	.00094
7	.0030	.0011
8	.0034	.0013
9	.0039	.0015
10	.0043	.0016
11	.0047	.0018
12	.0052	.0020
13	.0060	.0021
14	.0065	.0025
15		.0026

$\lambda_{b}=.00043(C)+\lambda_{1 C}$, for Segment Displays
$\lambda_{\mathrm{b}}=.00009+.00017(\mathrm{C})+\lambda_{1 C}$. Diode Array Displays
C $=$ Number of Characters
$\lambda_{X C}=.000043$ for Displays with a Logic Chip
= 0.0 for Displays without Logic Chip
NOTE: The number of characters in a display is the number of characters contained in a single sealed package. For example, a 4 character display comprising 4 separately packaged single characters mounted together would be 4-one character displays, not 1 -four character display.

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality π_{Q} JANTXV 0.7 JANTX 1.0 JAN 2.4 Lower 5.5 Plastic 8.0	

Temperature Factor $\cdot \pi_{T}$				
$T_{J}\left({ }^{\circ} \mathrm{C}\right)$ π_{T} $T_{J}\left({ }^{\circ} \mathrm{C}\right)$ π_{T} 25 1.0 75 3.8 30 1.2 80 4.3 35 1.4 85 4.8 40 1.6 90 5.3 45 1.8 95 5.9 50 2.1 100 6.6 55 2.4 105 7.3 60 2.7 110 8.0 65 3.0 115 8.8 70 3.4				
$\pi_{T}=\exp \left(-2790\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$				
$T_{J}=$				

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	8.0
N_{S}	5.0
N_{U}	12
A_{1}	4.0
$A_{I F}$	6.0
$A_{U C}$	6.0
$A_{U F}$	8.0
$A_{R W}$	17
S_{F}	.50
M_{F}	9.0
M_{L}	24
C_{L}	450

```
SPECIFICATION
MIL-S-19500
```


DESCRIPTION

Laser Diodes with Optical Fhx Densities
< 3 MW/cm ${ }^{2}$ and Fonward Current < 25 amps

$$
\lambda_{P}=\lambda_{b} \pi_{T} \pi_{Q} \pi_{1} \pi_{A} \pi_{P} \pi_{E} \text { Failures/106 Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{t}}$

Laser Diode Type	λ_{b}
GaAs/Al GaAs	3.23
In GaAs/In GaAsP	5.65

Temperature Factor $-\pi_{T}$	
$T_{J}\left({ }^{\circ} \mathrm{C}\right)$	

Quality Factor - $\pi^{2} \mathrm{Q}$	
Quality	π_{Q}
Hermetic Package	1.0
Nonhermetic with Facet Coating	1.0
Nonhermetic without Facet Coating	3.3

Forward Current Factor, π_{1}

Forward Peak Current (Amps)	π
.050	0.13
.075	0.17
.1	0.21
.5	0.62
1.0	1.0
2.0	1.6
3.0	2.1
4.0	2.6
5.0	4.8
10	6.3
15	7.7
20	8.9
25	

$\pi_{1}=(1)^{68}$
1 = Forward Peak Current (Amps), $1 \leq 25$
NOTE: For Variable Current Sources, use the Initial Current Value.
Application Factor π_{A}

Application	Duty Cycle	π_{A}
CW	-	4.4
Pulsed	.1	.32
	.2	.45
	.3	.65
	.4	.71
	.5	.77
	.6	.84
	.7	.89
	.8	.95
	.9	1.00
	1.0	
$\pi_{A}=4.4$, CW		
$\pi_{A}=$ Duty Cycle	0.5, Putsed	

NOTE: A duty cycle of one in pulsed application represents the maximum amount it can be driven in a pulsed mode. This is different from continuous wave application which will not withstand pulsed operating levels on a continuous basis.

MIL-HDBK-217F

6.13 OPTOELECTRONICS, LASER DIODE

Environment Factor $-\boldsymbol{\pi}_{E}$

Environment	$\boldsymbol{\pi}_{\mathrm{E}}$
G_{B}	1.0
G_{F}	2.0
G_{M}	8.0
$\mathrm{~N}_{\mathrm{S}}$	5.0
$\mathrm{~N}_{\mathrm{U}}$	12
$\mathrm{~A}_{\mathrm{K}}$	4.0
$\mathrm{~A}_{\mathrm{IF}}$	6.0
$A_{U C}$	6.0
$A_{U F}$	8.0
$A_{\text {RW }}$	17
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	9.0
M_{L}	24
C_{L}	450

6.14 DISCRETE SEMICONDUCTORS, T_{J} DETERMINATION

Ideally, device case temperatures should be determined from a detailed thermal analysis of the equipmeni. Device juncion iemperaiure is then caiculâted with time íolowing relationsitip:

$$
T_{J}=T_{C}+\theta_{d C} P
$$

where:
$\mathrm{T}_{\mathbf{J}}=$ Junction Temperature (${ }^{\circ} \mathrm{C}$)
$T_{C}=$ Case Temperature (${ }^{\circ} \mathrm{C}$). If no thermal analysis exists, the defauth case temperatures shown in Table 6-1 should be assumed.
${ }^{{ }_{J C}}=$ Junction-to-Case Thermal Resistance (${ }^{\circ} \mathrm{C} M$). This parameter should be determined from vendor, milliary specilication sheets or Table 6-2, whichever is greater. It may also be estimated by taking the reciprocal of the recommended derating level. For example, a device derating recommendation of .16 W/PC would
 $70^{\circ} \mathrm{CM}$.

P = Device Worse Case Power Dissipation (W)
The models are not applicable to devices at overstress conditions. If the calculated junction temperature is greater than the maximum rated junction temperature on the MIL slash sheets or the vendor's specifications, whichever is smalier, then the device is overstressed and these modeis ARE NOT APPLICABLE.

Table 6-1: Default Case Temperatures (T_{C}) for All Environments

Environment	$\left.\mathrm{T}_{\mathrm{C}}{ }^{\circ} \mathrm{C}\right)$
G_{B}	35
G_{F}	45
$\mathrm{G}_{\mathbf{M}}$	50
$\mathrm{~N}_{\mathrm{S}}$	45
$\mathrm{~N}_{\mathrm{U}}$	50
A_{K}	60
$\mathrm{~A}_{\mathrm{IF}}$	60
A_{UC}	75
$\mathrm{~A}_{\mathrm{UF}}$	75
$A_{R W}$	60
$\mathrm{~S}_{\mathrm{F}}$	35
M_{F}	50
M_{L}	60
C_{L}	45

6.14 DISCRETE SEMICONDUCTORS, T_{J} DETERMINATION

Table 6-2: Approximate Junction-to-Case Thermai Resistance ($\theta_{J C}$) ior Semiconductor Devices in Various Package Sizes*

Package Type	Ojc $\left({ }^{\circ} \mathrm{CM}\right)$	Package Type	Ojc (${ }^{\circ} \mathrm{CNM}$)
TO-1	70	TO-205AD	70
TO-3	10	TO-205AF	70
TO-5	70	TO-220	5
TO-8	70	DO-4	5
TO-9	70	DO-5	5
TO-12	70	DO-7	10
TO-18	70	DO-8	5
TO-28	5	DO-9	5
TO-33	70	DO-13	10
TO-39	70	DO-14	5
TO-41	10	DO-29	10
TO-44	70	DO-35	10
TO-46	70	DO-41	10
TO-52	70	DO-45	5
TO-53	5	DO-204MB	70
TO-57	5	DO-205AB	5
TO-59	5	PA-42A,B	70
TO-60	5	PD-36C	70
TO-61	5	PD-50	70
TO-63 TO-66	5 10	PD-77 PD-180	70 70
TO-66	10 70	PD-180	70 70
TO-72	70	PD-262	70
TO-83	5	PD-975	70
TO-89	22	PD-280	70
TO-92	70	PD-216	70
TO-94	5	PT-2G	70
TO-99 ${ }^{\text {TO-126 }}$	70 5	PT-6B PH-13	70 70
TO-127	5	PH-16	70
TO-204	10	PH-56	70
TO-204AA	10	PY-58	70
		PY-373	70

*When available, estimates must be based on military specification sheet or vendor values, whichever θ_{JC} is higher.

MIL-HDBK-217F

6.15 DISCRETE SEMICONDUCTORS, EXAMPLE

Example

Given: \quad Silicon dual transistor (complementary), JAN grade, rated for 0.25 W at $25^{\circ} \mathrm{C}$, one side only, and 0.35 W at $25^{\circ} \mathrm{C}$, both sides, with $T_{\text {max }}=200^{\circ} \mathrm{C}$, operating in linear service at $55^{\circ} \mathrm{C}$ case temperature in a shehered naval environment. Side one, NPN, operating at 0.1 W and 50 percent of rated voltage and side two, PNP, operating at 0.05 W and 30 percent of rated voltage. The device operates at less than 200 MHz .

Since the device is a bipolar dual transistor operating at low frequency ($<200 \mathrm{MHz}$), it falls into the Transistor, Low Frequency, Bipolar Group and the appropriate model is given in Section 6.3. Since the device is a dual device, it is necessary to compute the failure rate of each side separately and sum them together. Also, since θ_{JC} is unknown, $\theta_{J C}=70^{\circ} \mathrm{CN}$ will be assumed.

Based on the given information, the following model factors are determined from the appropriate tables shown in Section 6.3.

$\lambda_{b}=.00074$	
$\pi_{T 1}=2.2$	Side $1, T_{J}=T_{C}+\theta_{J C} P=55+70(.1)=62^{\circ} \mathrm{C}$
$\pi_{T 2}=2.1$	Side $2, T_{J}=55+70(.05)=59^{\circ} \mathrm{C}$
$\pi_{A}=1.5$	Using equation shown with π_{R} table, $P_{r}=.35 \mathrm{~W}$
$\pi_{R}=.68$	Side $1,50 \%$ Voltage Stress
$\pi_{S 1}=.21$	Side $2,30 \%$ Voltage Stress
$\pi_{S 2}=.11$	
$\pi_{Q}=2.4$	
$\pi_{E}=9$	

SIDE 1 SIDE 2
$\lambda_{\mathrm{P}}=\lambda_{\mathrm{B}} \pi_{\mathrm{T} 1} \pi_{\mathrm{A}} \pi_{\mathrm{R}} \pi_{\mathrm{S} 1} \pi_{\mathrm{Q}} \pi_{E}+\lambda_{\mathrm{B}} \pi_{\mathrm{T} 2} \pi_{A} \pi_{R} \pi_{S 2} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}$
$\lambda_{\mathrm{p}}=(.00074)(2.2)(1.5)(.68)(.21)(2.4)(9)+(.00074)(2.1)(1.5)(.68)(.11)(2.4)(9)$
$=.011$ Failures $/ 10^{6}$ Hours

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGNETRON

DESCRIPTION

All Types Except Traveling Wave Tubes and Magnetrons. Includes Receivers, CRT, Thyratron, Crossed Field Amplifier, Pulsed Gridded, Transmitting, Vidicons, Twystron, Pulsed Klystron, CW Klystron

$$
\lambda_{P}=\lambda_{D} \pi_{L} \pi_{E} \text { Failures/10 } 6 \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$
(Includes Both Random and Wearout Fallures)

Tube Type	λ_{b}	Tube Type	λ_{b}
Receiver Triode, Tetrode, Pentode Power Rectifier	${ }_{10}^{5.0}$	Klystron, Low Power, (e.g. Local Oscillator)	30
CRT	9.6	Klystron, Continuous Wave*	
Thyratron	50	3K3000LQ	9.0
$\begin{aligned} & \text { Crossed Field Amplifier } \\ & \text { QK681 } \\ & \text { SFD261 } \\ & \hline \end{aligned}$	$\begin{aligned} & 260 \\ & 150 \end{aligned}$	3K50000LF 3K210000LQ 3KM300LA	$\begin{array}{r} 54 \\ 150 \\ 64 \end{array}$
Pulsed Gridded		3KM3000LA	19
2041	140	3KM50000PA	110
6952	390	$3 \mathrm{KM50000PA1}$	120
7835	140	$3 \mathrm{KM50000PA2}$	150
Transmitting		$4 \mathrm{K3CC}$	610
Triode, Peak Pwr. ≤ 200 KW, Avg. Pwr $\leq 2 \mathrm{KW}$ Freq $<200 \mathrm{MHz}$	75	4K50000LQ	30
	100	4 KM 50 LB	28
≤ 200 KW Avg Power $\leq 2 \mathrm{KW}$		4KM50LC	15
Freq. $\leq 200 \mathrm{~kW}$		4KM50SJ	38
If any of the above limits exceeded	250	4KM50SK	37
Vidicon		4KM5000020	140 79
Antimony Trisulfide ($\mathrm{Sb}_{2} \mathrm{~S}_{3}$)		4KM50000LR	57
Photoconductive Material	51	4KM170000LA	15
Silicon Diode Array Photoconductive Material	48	8824	130
Twystron		8825	
VA144	850	8826	280
VA145E	450	VA853	220
VA145H	490	\checkmark A856B	65
VA913A	230	VA888E	230
Klystron, Pulsed* 4KMP10000LF	43		
8568	230	- It the CW Klystron of interest is not listed above,	
L3035	66	use the Alternate CW Klystron λ_{b} Table on the	
13250	69		

MIL-HDBK-217F

7.1 TUBES, ALL TYPES EXCEPT TWT AND MAGGNETRÔN

Alternate* Base Failure Rate for Pulsed Klystrons - λ_{o}

P(MW)	F(GHz)							
	. 2	4	. 6	. 8	1.0	2.0	4.0	6.0
01	16	16	16	16	16	16	16	16
. 30	16	16	17	17	17	18	20	21
. 80	16	17	17	18	18	21	25	30
1.0	17	17	18	18	19	22	28	34
3.0	18	20	21	23	25	34	51	
5.0	19	22	25	28	31	45	75	
8.0	21	25	30	35	40	63	110	
10	22	28	34	40	45	75		
25	31	45	60	75	90	160		
$\lambda_{D}=2.94(F)(P)+i 6$ $F=$ Operating Frequency in $\mathrm{GHz}, 0.2 \leq F \leq 6$ $P=P e a k$ Output Power in MW, $01 \leq P \leq 25$ and $\mathrm{P} \leq 490 \mathrm{~F}^{-2.35}$								
-See previous page for other Klystron Base Fallure Rates.								

Alternate" Base Failure Rate for CW Klystrons - λ_{B}

P(KW)	F(MHz)						
	300	500	8001000	2000	4000	6000	8000
0.1	30	31	$33 \quad 34$	38	47	57	66
1.0	31	32	$33 \quad 34$	39	48	57	66
3.0	32	33	3435	40	49	58	
5.0	33	34	$35 \quad 36$	41	50		
8.0	34	35	3738	42			
10	35	36	$38 \quad 39$	43			
30	45	46	4849				
50	55	56	5859				
80	70	71	73				
100	80	81					
$\lambda_{\mathrm{b}}=0.5 \mathrm{P}+.00046 \mathrm{~F}+29$							
$\begin{aligned} & P=\text { Average Output Power in KW, } 0.1 \leq P \leq 100 \\ & \text { and } P \leq 8.0(10)^{6}(F)^{-1.7} \end{aligned}$							
$F=\begin{aligned} & \text { Oparating Frequency in } \mathrm{MHz}, \\ & 300 \leq F \leq 8000\end{aligned}$$300 \leq F \leq 8000$							
-See previous page for other Klystron Base Failure Rates.							

Learning Factor $-\pi_{L}$

T (years)	π_{L}		
≤ 1	10		
2	2.3		
≥ 3	1.0		
π_{L}	$=10(1)^{-2.1}, 1 \leq T \leq 3$		
	$=10, T \leq 1$		
T	$=1, T \geq 3$	\quad	Number of Years since Introduction
:---			
to Fieid Use			

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	.50
G_{F}	1.0
G_{M}	14
N_{S}	8.0
N_{U}	24
$A_{I C}$	5.0
$A_{I F}$	8.0
$A_{U C}$	6.0
$A_{U F}$	12
$A_{\bar{R} W}$	40
S_{F}	.20
M_{F}	22
M_{I}	57
C_{L}	1000

MIL-HDBK-217F

DESCRIPTION

Traveling Wave Tubes

$$
\lambda_{p}=\lambda_{b} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{b}									
Power M	$\mathrm{Frequency}_{6}{ }_{8} \mathrm{GHz}_{10}$								
500	11	12	13	16 16	20	24	29	42	61
1000	11	12	14	16	20	24	29	43	62
3000	12	13	14	17	21	25	30	44	65
5000	12	13	15	18	22	26	32	46	68
8000	13	14	16	19	23	28	33	49	72
10000	14	15	18	20	24	29	35	51	75
15000	15	16	18	22	26	32	39	56	83
20000	17	18	20	24	29	35		62	91
30000	20	22	24	29	36	43	52	76	110
40000	25	27	30	36	43	53	64	93	140
$\lambda_{\mathrm{b}}=11(1.00002)^{\mathrm{P}}(1.1)^{F}$ $P=$ Rated Power in Wants (Peak, if Pulsed), $.001 \leq P \leq 40,000$ $F=$ Operating Frequency in GHz, $3 \leq F \leq 18$. It the operating frequency is a band, or two difterent values, use the geometric mean of the end point frequencies when using table.									

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	14
N_{S}	6.0
N_{U}	21
$A_{I C}$	10
$A_{I F}$	14
$A_{U C}$	11
$A_{U F}$	18
$A_{R W}$	40
S_{F}	.10
M_{F}	22
M_{L}	66
C_{L}	1000

MIL-HDBK-217F
7.3 TUBES, MAGNETRON

> DESCRIPTION
> Magnetrons, Pulsed and Continuous Wave (CW)
> $\lambda_{P}=\lambda_{b} \pi_{U} \pi_{C} \pi_{E}$ Failures/10 Hours

Base Failure Rate - λ_{b}

P(MW)	510.20 Frequency (GHz)													
	1	. 5	1	5	10	20	30	40	50	60	70	80	90	100
. 01	1.4	4.6	7.6	24	41	67	91	110	130	150	170	190	200	220
. 05	1.9	6.3	10	34	56	93	120	150	180	210	230	260	280	300
. 1	2.2	7.2	12	39	64	110	140	180	210	240	270	290	320	350
. 3	2.8	9.0	15	48	80	130	180	220	260	300	330	370	400	430
. 5	3.1	10	17	54	89	150	200	240	290	330	370	410	440	480
1	3.5	11	19	62	100	170	230	280	330	380	420	470	510	550
3	4.4	14	24	77	130	210	280	350	410	470	530	580	630	680
5	4.9	16	26	85	140	230	310	390	460	520	580	640	700	760
Pulsed	Magnetrons:							CW Magnetrons (Rated Power < 5 KW):						
λ_{b}	19(F) ${ }^{73}$ (P). 20							$\lambda_{b}=18$						
F	Operating Frequency in GHz ,				. $1 \leq 5 \leq 100$									
P	Output Power in MW,				. $01 \leq \mathrm{P} \leq 5$									

Utillization Factor $-\pi_{U}$
Utilization (Radiate Hours/ Filament Hours) π_{U} 0.0 .44 0.1 .50 0.2 .55 0.3 .61 0.4 .76 0.5 .78 0.6 .83 0.7 .89 0.8 .94 0.9 1.0 1.0 $R=$ Radiate Hours/Filament Hours

Construction Factor $-\pi_{\mathrm{C}}$

Construction	π_{C}
CW (Rated Power < 5 KW)	1.0
Coaxial Pulsed	1.0
Conventional Pulsed	5.4

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	4.0
N_{S}	15
N_{U}	47
$A_{I C}$	10
$A_{I F}$	16
$A_{U C}$	12
$A_{U F}$	23
$A_{R W}$	80
S_{F}	.50
M_{F}	43
M_{L}	133
C_{L}	2000

The models and failure rates presented in this section apply to laser peculiar items only, i.e., those items wherein the lasing action is generated and controlled. In addition to laser peculiar hems, there are other assemblies used with lasers that contain electronic parts and mechanical devices (pumps, valves, hoses, etc.). The faikure rates for these parts should be determined with the same procedures as used for other electronic and mechanical devices in the equipment or system of whict the laser is a part.

The laser failure rate models have been developed at the "functional," rather than "piece part" level because the available data were not sufficient for "piece part" model development. Nevertheless, the iaser ínctionai models are inciuded in this hanatoók in the interest of completeness. These laser models will be revised to include piece part models and other laser types when the data become available.

Because each laser family can be designed using a variety of approaches, the failure rate models have been siructured on tîree Dasic iaser íunctions wivicil are common io mosi iaser families, but may difîer in the hardware implementation of a given function. These functions are the lasing media, the laser pumping mechanism (or pump), and the coupling method.

Examples of media-related hardware and reliability inftuencing factors are the solid state rod, gas, gas pressure, vacuum integrity, gas mix, outgassing, and tube diameter. The electrical discharge, the flashlamp, and energy level are examples of pump-related hardware and reliability influencing factors. The coupling function reliability influencing factors are the " Q " switch, mirrors, windows, crystals, substrates, coatings, and level of dust protection provided.

Some of the laser models require the number of active optical surfaces as an input parameter. An active optical surface is one with which the laser energy (or beam) interacts. Internally reflecting surfaces are not counted. Figure 8-1 below illustrates examples of active optical surfaces and count.

Figure 8-1: Examples of Active Optical Surfaces

MIL-HDBK-217F

8.1 LASERS, HELIUM AND ARGON

DESCRIPTION
Helium Neon Lasers
Helium Cadmium Lasers
Argon Lasers

$$
\lambda_{P}=\lambda_{\text {MEDIA }} \pi_{E}+\lambda_{\text {COUPLING }} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Lasing Media Failure Rate $-\lambda_{\text {MEDIA }}$	
Type	$\lambda_{\text {MEDIA }}$
$\mathrm{He} / \mathrm{Ne}$	84
$\mathrm{He} / \mathrm{Cd}$	228
Argon	457

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	.30
G_{F}	1.0
G_{M}	4.0
N_{S}	3.0
N_{U}	4.0
$A_{I C}$	4.0
$A_{I F}$	6.0
$A_{U C}$	7.0
$A_{U F}$	9.0
$A_{R W}$	5.0
S_{F}	.10
M_{F}	3.0
M_{L}	8.0
C_{L}	N / A

mechanism is related to the gas media (as reflected in $\lambda_{\text {MEDIA }}$; however, when the tube is refilled periodically (preventive maintenance) the mirrors (as part of λ COUPLING) can be expected to deteriorate after approximately 104 hours of operation if in contact with the discharge region.
$\lambda_{\text {COUPLING }}$ is negligible for helium lasers.

MIL-HDBK-217F

8.2 LASERS, CARBON DIOXIDE, SEALED

DESCRIPTION
CO_{2} Sealed Continuous Wave Lasers

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{MEDIA}} \pi_{\mathrm{O}} \pi_{\mathrm{B}} \pi_{E}+10 \pi_{\mathrm{OS}} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Lasing Media Failure Rate - $\lambda_{\text {MEDIA }}$

Tube Current (mA)	$\lambda_{\text {MEDIA }}$	
10	240	
20	930	
30	1620	
40	2310	
50	3000	
100	6450	
150	9900	
MEDIA - 69(1) - 450		
I = Tube Current (mA), $10 \leq 1 \leq 150$		

Gas Overfill Factor $=\pi_{\mathrm{O}}$

CO_{2} Overill Percent (\%)	π_{O}
0	1.0
25	.75
50	.50

$\pi_{0}=1-.01$ (\% Overtill)
Overtill percent is based on the percent increase over the optimum CO_{2} partial pressure which is normally in the range of 1.5 to $3 \mathrm{~T}_{\text {or }}$ ($1 \mathrm{~T}_{\text {orr }}=1$ mm Hg Pressure) for most sealed CO_{2} lasers.

Ballast Factor $-\pi_{\mathrm{B}}$	
Percent of Ballast Volumetric Increase π_{B} 0 1.0 50 .58 100 .33 150 .19 200 $\pi_{\mathrm{B}}=(1 / 3)$ (\% Vol. Inc./100)	

Optical Surface Factor $-\pi \mathrm{OS}$
Active Optical Surfaces $\pi \mathrm{OS}$ 1 1 2 2 OS $=$ Number of Active Optical Surfaces NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or bean intermcts. Internaly refiecting surfaces are not counted. See Figure 8-1 for examples on determining the number of optical surfaces.

Environment Factor - π_{E}	
Environment	π_{E}
G_{B}	. 30
G_{F}	1.0
G_{M}	4.0
N_{S}	3.0
Nu	4.0
$A_{1 C}$	4.0
$\mathrm{A}_{\text {IF }}$	6.0
${ }^{\text {A }}$ UC	7.0
${ }^{\text {A }}$ UF	9.0
$A_{\text {RW }}$	5.0
S_{F}	. 10
M_{F}	3.0
M_{L}	8.0
C_{L}	N/A

DESCRIPTION
CO_{2} Flowing Lasers
$\lambda_{p}=\lambda_{\text {coupling }} \pi_{O S} \pi_{E}$ Failures $/ 10^{6}$ Hours

Coupling Failure Rate - $\lambda_{\text {coupling }}$	
Power (KW)	$\lambda^{\text {COUPLING }}$
$\begin{gathered} .01 \\ .1 \\ 1.0 \end{gathered}$	$\begin{array}{r} 3 \\ 30 \\ 300 \end{array}$
${ }^{\lambda}$ COUPLING $=$ $\mathrm{P}=$ Average Po Beyond the 1KW r begin to predominat It should also be no devices are the prim A tailored optical cle program on optic d	$W . .01 \leq P \leq 1.0$ falhure mechanisms COUPLING values wing laser optical ailure occurrence. θ maintenance tends laser life.

Optical Surface Factor $-\pi_{\mathrm{OS}}$
Active Optical Surfaces π_{OS} 1 1 2 2

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	.30
G_{F}	1.0
G_{M}	4.0
N_{S}	3.0
N_{U}	4.0
$A_{I C}$	4.0
$A_{I F}$	6.0
$A_{U C}$	7.0
$A_{U F}$	9.0
$A_{R W}$	5.0
S_{F}	.10
M_{F}	3.0
M_{L}	8.0
C_{L}	N / A

$\pi_{\mathrm{OS}}=$ Number of Active Optical Surfaces
NOTE: Only active optical surfaces are counted. An active optical surface is one with which the laser energy or beam interacts. Internally refiecting surfaces are not counted. See Figure 8.1 for examples on determining the number of optical surfaces.

DESCRIPTION
Neodymium-Yttrum-Aluminum-Gamet (ND:YAG) Rod Lasers

Ruby Rod Lasers

$$
\lambda_{P}=\left(\lambda_{\text {PUMP }}+\lambda_{\text {MEDIA }}+16.3 \pi_{C} \pi_{O S}\right) \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Pump Pulse Failure Rate - $\lambda_{\text {PUMP }}$
 (Xenon Flashlamps)

The empirical formula used to determine λ PUMP
(Failures/106 Hours) for Xenon lamps is:
$\lambda_{\text {PUMP }}=(3600)(P P S)\left[2000\left(\frac{E_{j}}{d L \sqrt{t}}\right)^{8.58}\right]\left[\pi_{\mathrm{COOL}}\right]$
λ PUMP is the failure rate contribution of the Xenon flashlamp or flashtube. The flashlamps evaluated herein are linear types used for military solid state laser systems. Typical default model parameters are given below.

PPS is the repetition pulse rate in pulses per second. Typical values range between 1 and 20 pulses per second.
$\mathrm{E}_{\mathrm{j}} \quad$ is the flashlamp or flashtube input energy per pulse, in joules. Its value is determined from the actual or design input energy. For values less than 30 joules, use $E_{j}=30$. Defaut value: $\mathrm{E}_{\mathrm{j}}=40$.
d is the flashlamp or flashtube inside diameter, in millimeters.
Defaut value: $d=4$.
$L \quad$ is the flashlamp or flashtube arc length in inches. Default value: $L=2$.
t is the truncated pulse width in microseconds. Use $t=100$ microseconds for any truncated pulse width exceeding 100 microseconds. For shorter duration pulses, pulse width is to be measured at 10 percent of the maximum current amplitude. Default value: $t=100$.
$\pi \mathrm{COOL}$ is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{\mathrm{COOL}}=1.0$ for any air or inert gas cooling. $\pi_{\mathrm{COOL}}=.1$ for all liquid cooled designs. Default value: $\pi_{\mathrm{COOL}}=.1$, liquid cooled.

Pump Pulse Failure Rate - $\lambda_{\text {PUMP }}{ }^{3}$

(Krypton Flashiamps)
The empirical formula used to determine $\lambda_{\text {pUMP }}$ for Krypton lamp is:
$\lambda_{\text {PLMMP }}=[625]\left[10^{80.9} \stackrel{P}{\mathrm{~L}}\right]\left[x_{\text {coo }}\right]$ Failures $/ 10^{6}$ Hours
$\lambda_{\text {PUMP }}$ is the failure rate contribution of the krypton flashlamp or flashtube. The flashlamps evaluted herein are the continuous wave (CW) type and are most widely used for commercial solid state applications. They are approx-imately 7 mm in diameter and 5 to 6 inches long.
$P \quad$ is the average input power in kilowatts. Default value: $\mathrm{P}=4$.
$L \quad$ is the flashlamp or flashtube arc length in inches. Defaut value: $L=2$.
π^{COOL} is the cooling factor due to various cooling media immediately surrounding the flashlamp or flashtube. $\pi_{\mathrm{COOL}}=1$ for any air or inent gas cooling. $\pi_{\mathrm{COOL}}=.1$ for all liquid designs. Default value: $\pi_{\mathrm{COOL}}=.1$, liquid cooled.

Media Failure Rate - λ MEDIA

Laser Type	$\lambda_{\text {MEDIA }}$
ND:YAG	0
Ruby	(3600) (PPS) $\left[43.5 \mathrm{~F}^{2.52}\right]$

PPS is the number of pulses per second
F is the energy density in Joules per cm. $2 /$ pulse over the cross-sectional area of the laser beam, which is nominally equivalent to the cross-sectional area of the laser rod, and its value is determined from the actual design parameter of the laser rod utilized.

NOTE: $\lambda_{\text {MEDIA }}$ is negligible for ND:YAG lasers.

Cleanliness Level	${ }^{\pi} \mathrm{C}$
Rigorous clearliness procedures and trained maintenance personnel. Bellows provided over optical train. Minimal precautione during opening. maintenence, repair, and testing. Bellows provided over optical train. Minimal precaustions during opening, maintenence, repair, and testing. No bellowe provided over optical train.	30 60
NOTE: Although sealed syetems tend to be rellable once compatible materials have been selected and proven, extreme care must still be taken to prevent the entrance of perticulates during manufacturing. field flashlamp replacement, or routine maintenance/ repair. Contamination is the major cause of solid state laser malfunction, and spectal provisions and vigilance must continually be provided to maintain the cleanliness level required.	

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	.30
G_{F}	1.0
G_{M}	4.0
$\mathrm{~N}_{\mathrm{S}}$	3.0
$\mathrm{~N}_{\mathrm{U}}$	4.0
$\mathrm{~A}_{\mathrm{IC}}$	4.0
$\mathrm{~A}_{\mathrm{IF}}$	6.0
$\mathrm{~A}_{\mathrm{UC}}$	7.0
$\mathrm{~A}_{\mathrm{UF}}$	9.0
$\mathrm{~A}_{\mathrm{RW}}$	5.0
$\mathrm{~S}_{\mathrm{F}}$.10
M_{F}	3.0
M_{L}	8.0
C_{L}	N / A

Optical Surface Factor $-\pi_{\mathrm{OS}}$

Active Optical Surfaces	π_{OS}
1	1
2	2
$\pi_{\mathrm{OS}}=$ Number of Active Optical Surfaces	
NOTE: Only ective optical surfacas are counted.	
An active optical surface is one with which ite laser	
energy or beam interacts. Internally reflecting	
surfaces are not counted. See Figure 8-1 for	
examples on determining the number of optical	
surfaces.	

This section includes the active resistor specifications and, in addition, some older/inactive specifications are inctuded because of the large number of equipments still in field use which contain these parts.

The Established Reliability (ER) resistor family generalty has four qualification failure rate levels when tested per the requirements of the applicable specification. These qualification failure rate levels differ by a factor of ten (from one level to the next). However, field data has shown that these failure rate levels differ by a factor of about only three, hence the π_{Q} values have been set accordingly.

The use of the resistor models requires the calculation of the electrical power stress ratio, Stress = operating power/rated power, or per Section 9.16 for variable resistors. The models have been structured such that derating curves do not have to be used to find the base faiture rate. The rated power for the stress ratio is equal to the full nominal rated power of the resistor. For example, a MIL-R-39008 resistor has the following derating curve:

Figure 9-1: MIL-R-39008 Derating Curve

This particular resistor has a rating of 1 watt at $70^{\circ} \mathrm{C}$ ambient, or beiow. If it were being used in an ambient temperature of $100^{\circ} \mathrm{C}$, the rated power for the stress calculation would still be 1 watt, not 45% of 1 watt (as read off the curve for $100^{\circ} \mathrm{C}$). Of course, while the derating curve is not needed to determine the base failure rate, it must still be observed as the maximum operating condition. To aid in determining if a resistor is being used within rated conditions, the base failure rate tables show entries up to certain combinations of stress and temperature. If a given operating stress and temperature point falls in the blank pontion of the base faiture rate table, the resistor is overstressed. Such misapplication would require an analysls of the circuit and operating conditions to bring the resistor within rated conditions.

MIL-HDBK-217F

9.1 RESISTORS, FIXED, COMPOSITION
SPECIFICATION
MIL-R-39008
MIL-R-11

STYLE DESCRIPTION RCR RC

Resistors, Fixed, Composition (Insulated), Established Reliability Resistors, Fixed, Composition (Insulated)

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{\mathrm{R}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	. 1	. 3	. 5	. 7	. 9
0	. 00007	. 00010	. 00015	. 00020	. 00028
10	. 00011	. 00015	. 00021	. 00030	. 00043
20	. 00015	. 00022	. 00031	. 00045	. 00064
30	. 00022	. 00031	. 00046	. 00066	. 00096
40	. 00031	. 00045	. 00067	. 00098	. 0014
50	. 00044	. 00066	. 00098	. 0014	. 0021
60	. 00063	. 00095	. 0014	. 0021	. 0032
70	. 00090	. 0014	. 0021	. 0032	. 0048
80	. 0013	. 0020	. 0031	. 0047	
90	. 0018	. 0029	. 0045		
100	. 0026	. 0041	. 0065		
110	. 0038	. 0060			
120	. 0054				
$\lambda_{b}=4.5 \times 10^{-9} \exp \left(12\left(\frac{T+273}{343}\right)\right) \exp \left(\frac{S}{.6}\left(\frac{T+273}{273}\right)\right)$					
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)					
$S=$ Ratio of Operating Power to Rated Power					

Quality Factor $-\pi_{Q}$	
Quality	π_{Q}
S	.03
R	0.1
P	0.3
M	1.0
MIL-R-11	5.0
Lower	15

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	8.0
N_{S}	5.0
N_{U}	13
$A_{I C}$	4.0
$A_{I F}$	5.0
$A_{U C}$	7.0
$A_{U F}$	11
$A_{R W}$	19
S_{F}	.50
M_{F}	11
M_{L}	27
C_{L}	490

SPECIFICATION	STYLE
MIL-R-39017	RLR
MIL-R-22684	RL
MIL-R-55182	RN $(R, C, o r N)$
MIL-R-10509	RN
	$\lambda_{D}=\lambda_{b} \pi_{R} \pi_{Q} \pi_{E}$

DESCRIPTION

Fixed, Film, Insulated, Established Reliability
Fixed, Film, Insulated
Fixed, Film, Established Reliability Fixed, Film, High Stability

Failures $/ 10^{6}$ Hours

Base Failure Rate - λ_{b} (MIL-R-22684 and MIL-R-39017)

$\left.T_{A}{ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00059	.00073	.00089	.0011	.0013
10	.00063	.00078	.00096	.0012	.0014
20	.00067	.00084	.0010	.0013	.0016
30	.00072	.00090	.0011	.0014	.0018
40	.00078	.00098	.0012	.0016	.0019
50	.00084	.0011	.0014	.0017	.0022
60	.00092	.0012	.0015	.0019	.0024
70	.0010	.0013	.0017	.0021	.0027
80	.0011	.0014	.0018	.0024	
90	.0012	.0016	.0021	.0027	
100	.0013	.0018	.0023		
110	.0015	.0020	.0026		
120	.0017	.0023			
130	.0019				
140	.0022				
10					
10					

$\lambda_{\mathrm{D}}=3.25 \times 10^{-4} \exp \left(\frac{T+273}{343}\right)^{3} \exp \left(\mathrm{~S}\left(\frac{T+273}{273}\right)\right)$
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$S=$ Ratio of Operating Power to Rated Power

Base Failure Rate - λ_{b}
(MIL-R-10509 and MIL-R-55182)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	. 1	. 3	. 5	. 7	. 9
0	. 00061	. 00074	. 00091	. 0011	. 0014
10	. 00067	. 00082	. 0010	. 0012	. 0015
20	. 00073	. 00091	. 0011	. 0014	. 0017
30	. 00080	. 0010	. 0013	0016	. 0019
40	. 00088	. 0011	. 0014	. 0017	. 0022
50	. 00096	. 0012	. 0015	. 0020	. 0025
60	. 0011	. 0013	. 0017	. 0022	. 0028
70	. 0012	. 0015	. 0019	. 0025	. 0032
80	. 0013	. 0016	. 0021	. 0028	. 0036
90	. 0014	. 0018	. 0024	. 0031	. 0040
100	. 0015	. 0020	. 0026	. 0035	. 0045
110	. 0017	. 0022	. 0029	. 0039	. 0051
120	. 0018	. 0024	. 0033	. 0043	. 0058
130	. 0020	. 0027	. 0036	. 0049	. 0065
140	. 0022	. 0030	. 0040	. 0054	
150	. 0024	. 0033	. 0045		
160	. 0026	. 0036			
170	. 0029				
$\lambda_{\mathrm{D}}=5 \times 10^{-5} \exp \left(3.5\left(\frac{T+273}{398}\right)\right) \exp \left(\mathrm{S}\left(\frac{T+273}{273}\right)\right)$					
$\mathrm{T}=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)					
$s=$ Ratio of Operating Power to Rated Power					

NOTE: Do not use MIL-R-10509 (Characteristic B) below the line. Points below are overstressed.

MIL-HDBK-217F

9.2 RESISTORS, FIXED, FILM

Resistance Factor $-\pi_{R}$	
Resistance Range (ohms)	π_{R}
$<.1 \mathrm{M}$	1.0
$\geq 0.1 \mathrm{M}$ to 1 M	1.1
$>1.0 \mathrm{M}$ to 10 M	1.6
$>10 \mathrm{M}$	2.5

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
S	.03
R	0.1
P	0.3
M	1.0
MIL-R-10509	5.0
MIL-R-22684	5.0
Lower	15

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	8.0
N_{S}	4.0
N_{U}	14
$A_{I C}$	4.0
$A_{I F}$	8.0
$A_{U C}$	10
$A_{U F}$	18
$A_{R W}$	19
S_{F}	.20
M_{F}	10
M_{L}	28
C_{L}	510

MIL-HDBK-217F
9.3 RESISTORS, FIXED, FILM, POWER

SPECIFICATION
MIL-R-11804

STYLE
 RD

DESCRIPTION
 Fixed, Film, Power Type

$$
\lambda_{p}=\lambda_{b} \pi_{R} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{0}					
	Stress				
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 0089	. 0098	. 011	. 013	. 015
10	. 0090	. 010	. 011	. 013	. 015
20	. 0092	. 010	. 012	. 014	. 016
30	. 0094	. 010	. 012	. 014	. 017
40	. 0096	. 011	. 012	. 015	. 017
50	. 0098	. 011	. 013	. 015	
60	. 010	. 011	. 013	. 016	
70	. 010	. 012	. 014	. 016	
80	. 010	. 012	. 014	. 017	
90	. 011	. 012	. 015		
100	. 011	. 013	. 015		
110	. 011	. 013	. 016		
120	. 012	. 014	. 016		
130	. 012	. 014	. 017		
140	. 012	. 014			
150	. 013	. 015			
160	. 013	. 016			
170	. 014	. 016			
180	. 014				
190	. 015				
200	. 015				
210	. 016				
λ_{h}	$\begin{aligned} & 7.33 x \\ & \exp (\end{aligned}$	$\begin{aligned} & 0^{-3} \exp \\ & \left.\frac{s}{.45}\right) \end{aligned}$	$\begin{array}{r} 202(T \\ +273 \\ 273 \end{array}$	$\begin{aligned} & \left.\frac{73}{8}\right)^{2} \\ & 9)^{1.3} \end{aligned}$	
	Ambie	emper	$\theta\left({ }^{\circ} \mathrm{C}\right.$		
	Ratio of	Operatin	Power	Rated	

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-SPEC	1.0
Lower	3.0

Environment Factor - π_{E}

Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	10
$\mathrm{~N}_{\mathrm{S}}$	5.0
$\mathrm{~N}_{\mathrm{U}}$	17
$\mathrm{~A}_{I C}$	6.0
$\mathrm{~A}_{I F}$	8.0
$\mathrm{~A}_{U C}$	14
$\mathrm{~A}_{\mathrm{UF}}$	18
$A_{R W}$	25
$\mathrm{~S}_{F}$.50
M_{F}	14
M_{L}	36
C_{L}	660

Resistance Factor $-\pi_{R}$

Resistance Range (ohms)	π_{R}
1010100	1.0
>100 to 100 K	1.2
$>100 \mathrm{~K} 101 \mathrm{M}$	1.3
$>1 \mathrm{M}$	3.5

MIL-HDBK-217F

9.4 RESISTORS, NETWORK, FIXED, FILM

SPECIFICATION STYLE	DESCRIPTION MIL-R-83401	RESistor Networks, Fixed, Film

$\mathrm{T}_{\mathrm{C}}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}	$\mathrm{T}_{\mathrm{C}}\left({ }^{\circ} \mathrm{C}\right)$	π_{T}
25	1.0	80	8.3
30	1.3	85	9.8
35	1.6	90	11
40	1.9	95	13
45	2.4	100	15
50	2.9	105	18
55	3.5	110	21
60	4.2	115	24
65	5.0	120	27
70	6.0	125	31
75	7.1		
$\pi_{T}=\exp \left(-4056\left(\frac{1}{T_{C}+273}-\frac{1}{298}\right)\right.$			
$T_{C}=$ Case Temperature (${ }^{\circ} \mathrm{C}$)			

NOTE: $H T_{C}$ is unknown, it can be estimated as follows:
$T_{C}=T_{A}+55(S)$
$T_{A}=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$S=\frac{\text { Operating Power }}{\text { Package Rated Power }}$

Any device operating at $T_{C}>125^{\circ} \mathrm{C}$ is overstressed.

${\text { Quality Factor }-\pi_{\mathrm{Q}}}^{\|c\| c \mid}$Quality 1 MIL-SPEC 3	

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	8.0
N_{S}	4.0
N_{U}	14
$A_{I C}$	4.0
$A_{I F}$	8.0
$A_{U C}$	9.0
$A_{U F}$	18
$A_{R W}$	19
S_{F}	.50
M_{F}	14
M_{L}	28
C_{L}	510

Number of Resistors Factor $-\pi$ NR
$\pi_{\text {NR }}=$ Number of Film Resistors in Use
NOTE: Do not include resistors that are not used.

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39005	RBR	Fixed, Wirewound, Accurate, Established Reliability
MIL-R-93	RB	Fixed, Wirewound, Accurate

$$
\lambda_{p}=\lambda_{D} \pi_{R} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Faikre Rate - λ_{D}					
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	. 1	. 3	. 5	. 7	. 9
,	. 0033	. 0037	. 0045	. 0057	. 0075
10	. 0033	. 0038	. 0047	. 0059	. 0079
20	. 0034	. 0039	. 0048	. 0062	. 0084
30	. 0034	. 0040	. 0050	. 0066	. 0090
40	. 0035	. 0042	. 0052	. 0070	. 0097
50	. 0037	. 0043	. 0055	. 0075	. 011
60	. 0038	. 0046	. 0059	. 0081	. 012
70	. 0041	. 0049	. 0064	. 0089	. 013
80	. 0044	. 0053	. 0070	. 0099	. 015
90	. 0048	. 0059	. 0079	. 011	. 017
100	. 0055	. 0068	. 0092	. 013	. 020
110	. 0065	. 0080	. 011	. 016	. 025
120	. 0079	. 0099	. 014	. 021	. 033
130	. 010	. 013	. 018	. 028	
140	. 014				
$\lambda_{b}=.0031 \exp \left(\frac{T+273}{398}\right)^{10} \exp \left(s\left(\frac{T+273}{273}\right)\right)^{1.5}$					
T - Ambient Temperature (${ }^{\circ} \mathrm{C}$)					
$S=$ Ratio of Operating Power to Rated Power					

Resistance Factor $-\pi_{\mathrm{R}}$

Resistance Range (ohms)	π_{R}
Up to 10 K	1.0
$>10 \mathrm{~K}$ to 100 K	1.7
$>100 \mathrm{~K} 101 \mathrm{M}$	3.0
$>1 \mathrm{M}$	5.0

Quality Factor $-\pi_{Q}$	
Quality	π_{Q}
S	.030
R	.10
P	.30
M	1.0
MIL-R-93	5.0
Lower	15
Environment $^{G_{B}}$	
G_{F}	π_{E}
G_{M}	1.0
N_{S}	2.0
N_{U}	11
$A_{I C}$	5.0
$A_{I F}$	18
$A_{U C}$	15
$A_{U F}$	18
$A_{R W}$	28
S_{F}	35
M_{F}	27
M_{L}	14
C_{L}	38

MIL-HDBK-217F

O.G RESISTORS, FIXED, WIREWOUND, POWER

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39007	RWR	Fixed, Wirewound, Power Type, Established Reliabilty
MIL-R-26	RW	Fixed, Wirewound, Power Type

Base Failure Rate $-\lambda_{\mathrm{b}}$						
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9	
0	.0042	.0062	.0093	.014	.021	
10	.0045	.0068	.010	.016	.024	
20	.0048	.0074	.011	.017	.027	
30	.0052	.0081	.013	.020	.031	
40	.0056	.0089	.014	.022	.035	
50	.0061	.0097	.016	.025	.040	
60	.0066	.011	.017	.028		
70	.0072	.012	.020	.032		
80	.0078	.013	.022	.037		
90	.0085	.014	.025	.042		
100	.0093	.016	.028	.048		
110	.010	.019	.031	.055		
120	.011	.020	.036	.063		
130	.012	.022	.040			
140	.014	.025	.046			
150	.015	.028	.052			
160	.017	.032	.060			
170	.019	.036	.068			
180	.021	.040	.078			
190	.023	.046				
200	.026	.052				
210	.029	.059				
220	.033	.066				
230	.037	.077				
240	.042	.088				
250	.047	.10				
260	.054					
270	.061					
280	.06					
290	.079					
300	.091					
310	.10					

$\left.\lambda_{\mathrm{b}}=00148 \exp \left(\frac{T+273}{298}\right)^{2} \exp \left(\frac{S}{.5}\right)\left(\frac{T+273}{273}\right)\right)$
$T=A m b i e n t$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{S}=$ Ratio of Operating Power to Rated Power

NOTE: Do not use MIL-R-39007 Resistors below the line. Points below are overstressed.

MIL-HDBK-217F

MIL-HDBK-217F

9.7 RESISTORS, FIXED, WIREWOUND, POWER, CHASSIS MOUNTED

SPECIFICATION
 M!L-R-39009

MIL-R-18546
style RER

RE

DESCRIPTION
Fixed, Wirewound, Power Type, Chassis Mounted, Established Reliability
Fixed, Wirewound, Power Type, Chassis Mounted

$$
\lambda_{P}=\lambda_{b} \pi_{R} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{t}					
	Stress				
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$	1	. 3	. 5	. 7	. 9
0	. 0021	. 0032	. 0049	. 0076	. 012
10	. 0023	. 0036	. 0056	. 0087	. 014
20	. 0025	. 0040	. 0064	. 0100	. 016
30	. 0028	. 0045	. 0072	. 012	. 019
40	. 0031	. 0050	. 0082	. 013	. 022
50	. 0034	. 0056	. 0093	. 016	. 026
60	0037	. 0063	. 011	. 016	
70	. 0041	. 0070	. 012	. 021	
80	. 0045	. 0079	. 014	. 024	
90	0050	. 0088	016	. 028	
100	0055	0098	018	032	
110	. 0060	. 011	. 020		
120	. 0066	. 012	. 023		
130	. 0073	. 014	. 026		
140	. 0081	. 015	. 030		
150	. 0089	. 017	. 034		
160	. 0098	. 019			
170	. 011	. 022			
180	. 012	. 024			
130	. 013	. 027			
200	. 014	. 030			
210	. 016				
220	. 017				
230	. 019				
240	. 021				
250	. 023				
$\lambda_{b}=.00015 \exp \left(2.64\left(\frac{T+273}{298}\right)\right) \exp \left(\frac{S}{.466}\left(\frac{T+273}{273}\right)\right)$					
T	Ambie	Temper	($\left({ }^{\circ} \mathrm{C}\right)$		
S	Fatio	Operatio	Ower it	aied P	

Resistance Factor - π_{R}
(Characteristic G (Inductive Winding) of MIL-R-18546 and

Siyto	Rated Power (W)	Resistance Range (ohms)					
		$\begin{aligned} & U_{p} \\ & 10 \\ & 500 \end{aligned}$	$\begin{aligned} & >500 \\ & 10 \\ & 1 K \end{aligned}$	$\begin{aligned} & \hline 21 \mathrm{~K} \\ & 10 \\ & 5 \mathrm{~K} \end{aligned}$	$\begin{gathered} 25 \mathrm{~K} \\ 10 \\ 10 \mathrm{~K} \end{gathered}$	$\begin{aligned} & \mathbf{2 1 0 K} \\ & \text { 10 } \\ & 20 \mathrm{~K} \end{aligned}$	20K
RE 60 RER60	5	1.0	1.2	1.2	1.6	NA	NA
RE 65 RER65	10	1.0	1.0	1.2	1.6	NA	NA
$\begin{aligned} & \text { RE } 70 \\ & \text { RER70 } \end{aligned}$	20	1.0	1.0	1.2	1.2	1.6	NA
$\text { RE } 75$ RER75	30	1.0	1.0	1.0	1.1	1.2	1.6
RE 77	75	1.0	1.0	1.0	1.0	1.2	1.6
RE 80	120	1.0	1.0	1.0	1.0	1.2	1.6

Resistance Factor - π_{R}
(Characteristic N (Noninductive Winding) of MIL-R-18546 and Noninductively Wound Styles of MIL-R-39009)

Siyte	Rated Power (w)	Resistance Range (ohms)					
		$\begin{aligned} & \mathrm{Up}_{\mathrm{p}} \\ & \text { to } \\ & 500 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 0 0} \\ & \text { to } \\ & \text { ik } \end{aligned}$	$\begin{aligned} & \text { sk } \\ & \text { to } \\ & \text { SK } \end{aligned}$	$\begin{array}{r} 350 \\ 10 \\ 100 \end{array}$	$\begin{gathered} 210 \\ 10 \\ 20 \mathrm{~K} \end{gathered}$	20K
RE 60 RER40	5	1.0	1.2	1.6	NA	NA	NA
RE 65 RER45	10	1.0	1.2	1.6	NA	NA	NA
RE 70 RER50	20	1.0	1.0	1.2	1.6	NA	NA
RE 75 RER55	30	1.0	1.0	1.1	1.2	1.4	NA
RE 77	75	1.0	1.0	1.0	1.2	1.6	NA
RE 80	120	1.0	1.0	1.0	1.1	1.4	NA

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 10 N_{S} 5.0 N_{U} 16 $A_{I C}$ 4.0 $A_{I F}$ 8.0 $A_{U C}$ 9.0 $A_{U F}$ 18 $A_{R W}$ 23 S_{F} .50 M_{F} 13 M_{L} 34 C_{L} 610	

MIL-HDBK-217F

9.8 RESISTORS, THERMISTOR

SPECIFICATION
MII-T-23648

Style RTH

DESCRIPTION Thermally Sensitive Resistor, Insulated, Bead, Disk and Rod Types

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{\mathrm{O}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

Base Faikure Rate $-\lambda_{b}$	
Type	λ_{b}
Bead (Styles 24, 26, 28, 30, 32, 34, 36, 38, 40)	.021
Disk (Styles 6, 8, 10)	
Rod (Styles 12, 14, 16, 18, 20, 22, 42)	.065

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MilL-SPEC	1
Lower	15

9.9 RESISTORS, VARIABLE, WIREWOUND

Base Faiure Rate $-\lambda_{D}$					
$T_{A}\left({ }^{\circ} C\right)$.1	.3	.5	.7	.9
0	.0089	.011	.013	.016	.020
10	.0094	.012	.014	.017	.021
20	.010	.012	.015	.019	.024
30	.011	.013	.017	.021	.026
40	.012	.015	.018	.023	.029
50	.013	.016	.020	.026	.033
60	.014	.018	.023	.029	.037
70	.016	.020	.026	.033	.043
80	.018	.023	.03	.039	.050
90	.021	.027	.035	.046	.060
100	.024	.032	.042	.055	
110	.029	.038	.051		
120	.035	.047			
130	.044	.059			
140	.056				

Resistance Factor $-\pi_{R}$

Resistance Range (ohms)	π_{R}
10 to 2 K	1.0
$>2 \mathrm{~K}$ to 5 K	1.4
$>5 \mathrm{~K}$ to 20 K	2.0

Voltage Factor - π_{V}		
$\frac{\text { Applied }}{\text { Rated }}$	$\begin{aligned} & \text { Voltage* } \\ & \hline \text { Voltage } \end{aligned}$	π_{V}
0 to 0.1		1.10
>0.1 to 0.2		1.05
>0.2 to 0.6		1.00
>0.6 to 0.7		1.10
>0.7 to 0.8		1.22
>0.8 to 0.9		1.40
>0.9 to 1.0		2.00
$*^{\text {Applied }}$	$=\sqrt{R P}$	
	- Nomin Resist	
$\mathrm{P}_{\text {Applied }}$	= Power	
$V_{\text {Rated }}$	40 Volts	
$V_{\text {Rated }}$	$\begin{aligned} & =90 \text { Votts } \\ & \text { and } 22 \end{aligned}$	d 24;

MIL-HDBK-217F

9.9 RESISTORS, VARIABLE, WIREWOUND

Quality Factor $-\pi_{Q}$	
Quality	π_{Q}
S	.020
R	.060
P	.20
M	.60
MIL-R-27208	3.0
Lower	10

Environment Factor $-\pi_{E}$	
Environment	$\boldsymbol{\pi}_{\mathrm{E}}$
G_{B}	1.0
G_{F}	2.0
G_{M}	12
$\mathrm{~N}_{\mathrm{S}}$	6.0
$\mathrm{~N}_{\mathrm{U}}$	20
$\mathrm{~A}_{\mathrm{IC}}$	5.0
$\mathrm{~A}_{\mathrm{IF}}$	8.0
$\mathrm{~A}_{\mathrm{UC}}$	9.0
$\mathrm{~A}_{\mathrm{UF}}$	15
$\mathrm{~A}_{\mathrm{RW}}$	33
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	18
M_{L}	48
C_{L}	870

MIL-HDBK-217F

9.10 RESISTORS, VARIABLE, WIREWOUND, PRECISION

Vortage Factor - πV		
Applied Voltage* Rated Voltage		πV
0 to 0.1		1.10
>0.1 to 0.2		1.05
>0.2 to 0.6		1.00
>0.6 to 0.7		1.10
>0.7 to 0.8		1.22
>0.8 to 0.9		1.40
>0.9 to 1.0		2.00
$V_{\text {Applied }}=\sqrt{R_{P} P_{\text {Applied }}}$		
	- Nomina Resista	
$P_{\text {Appliod }}$	- Power Dissipation	
$V_{\text {Rated }}$	$=2$	1100.
	RR1300, RR2000, RR3000, RR3100, RR3200, RR3300, RR3400, RR3500	
$V_{\text {Rated }}$	= 423 Volts for RR3600, RR3700	
$V_{\text {Rated }}$	- 500 Volts for RR1000. RR1400, RR2100, RR3800. RR3900	

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-SPEC	2.5
Lower	5.0

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 18 N_{S} 8.0 N_{U} 30 $A_{I C}$ 8.0 $A_{I F}$ 12 $A_{U C}$ 13 $A_{U F}$ 18 $A_{R W}$ 53 S_{F} .50 M_{F} 29 M_{L} 76 C_{L} 1400	

MIL-HDBK-217F

9.11 RESISTORS, VARIABLE, WIREWOUND, SEMIPRECISION

SPECIFICATION

MIL-R-19
MIL-R-39002

STYLE
RA
RK

DESCRIPTION
Variable, Wirewound, Semiprecision (Low Operating Temperature)
Variable, Wirewound, Semiprecision

$$
\lambda_{p}=\lambda_{b} \pi_{T A P S} \pi_{R} \pi_{V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

$T_{A}\left({ }^{\circ} C\right)$.1	.3	.5	.7	.9
0	.055	.063	.072	.083	.095
10	.058	.069	.081	.095	.11
20	.063	.076	.092	.11	.13
30	.069	.086	.11	.13	.17
40	.076	.098	.13	.16	.21
50	.085	.11	.15	.20	.27
60	.096	.13	.19	.26	.37
70	.11	.16	.24	.35	.52
80	.13	.20	.31	.48	.75
90	.16	.26	.42	.69	1.1
100	.19	.34	.59	1.0	
110	.24	.45	.85		
120	.31				
130	.42				

$$
\begin{aligned}
\lambda_{b}= & .0398 \exp \left(.514\left(\frac{T+273}{313}\right)^{5.28}\right) \times \\
& \exp \left(\frac{S}{1.44}\left(\frac{T+273}{273}\right)^{4.46}\right) \\
T= & \text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\
S= & \text { Ratio of Operating Power to Rated Power. } \\
& \text { See Section } 9.16 \text { for } S \text { Calculation. }
\end{aligned}
$$

NOTE: Do not use MIL-R-19 below the line. Points below are overstressed.

$N_{\text {TAPS }}$	${ }^{\text {TAPS }}$	$N_{\text {taps }}$	${ }^{\text {TAPS }}$	${ }^{\text {TAPS }}$	${ }^{\text {T TAPS }}$
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
$\frac{\left(N_{\text {TAPS }}\right)^{\frac{3}{2}}}{25}+0.792$					
$\mathrm{N}_{\text {TAP }}$	Number of Potentiometer Taps, including the Wiper and Terminations.				

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	16
N_{S}	7.0
N_{U}	28
$A_{I C}$	8.0
$A_{I F}$	12
$A_{U C}$	N / A
$A_{U F}$	N / A
$A_{R W}$	38
S_{F}	.50
M_{F}	N / A
M_{L}	N / A
C_{L}	N / A

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-SPEC	2.0
Lower	4.0

MIL-HDBK-217F

9.12 RESISTORS, VARIABLE, WIREWOUND, POWER

SPECIFICATION
MIL-R-22

$$
\begin{array}{ll}
\text { STYLE } & \begin{array}{l}
\text { DESCRIPTION } \\
\text { VP }
\end{array} \\
\lambda_{p}=\lambda_{b} \pi_{T A P S} \pi_{R} \pi_{V} \pi_{C} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
\end{array}
$$

Base Failure Rate - λ_{B}					
$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	. 1	. 3		. 7	. 9
0	. 064	. 074	. 084	. 097	. 11
10	. 067	. 078	. 091	. 11	. 12
20	. 071	. 084	. 099	. 12	. 14
30	. 076	. 091	. 11	. 13	. 16
40	081	. 099	. 12	. 15	
50	. 087	. 11	. 14	. 17	
60	. 095	. 12	. 15		
70	. 10	. 14	. 18		
80	. 12	. 15			
90	. 13	. 18			
100	. 15				
110	. 17				
120	. 20				
$\begin{aligned} & \lambda_{\mathrm{b}}= .0481 \exp \left(.334\left(\frac{T+273}{298}\right)^{4.66}\right) \times \\ & \exp \left(\frac{\mathrm{S}}{1.47}\left(\frac{\mathrm{~T}+273}{273}\right)^{2.83}\right) \\ & T= \text { Ambient Temperature (}{ }^{\circ} \mathrm{C} \text {) } \\ & \mathrm{S}= \text { Ratio of Operating Power to Rated Power. } \\ & \text { See Section } 9.16 \text { for } S \text { Calculation. } \end{aligned}$					

Resistance Factor $-\pi_{R}$	
Resistance Range (ohms) π_{R} 1 to 2 K 1.0 $>2 \mathrm{~K}$ to 5 K 1.4 $>5 \mathrm{~K}$ to 10 K 2.0	

Potentiometer Taps Factor $-\pi_{\text {TAPS }}$					
$\mathrm{N}_{\text {TAPS }}$	${ }_{\text {TAPS }}$	$N_{\text {TAPS }}$	${ }^{\mathrm{T} \text { TAPS }}$	$\mathrm{N}_{\text {TAPS }}$	${ }^{\text {T }}$ TAPS
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
$\pi_{\text {TAPS }}=\frac{\left(N_{\text {TAPS }}\right)^{\frac{3}{2}}}{25}+0.792$					
$\mathrm{N}_{\text {TAPS }}$		Number of Potentiometer Taps, including the Wiper and Terminations			

MIL-HDBK-217F

9.12 RESISTORS, VARIABLE, WIREWOUND, POWER

Vohtage Factor - π,	
Applied Voltago* Rated Voltage	π_{V}
0 to 0.1	1.10
>0.1 to 0.2	1.05
>0.2 to 0.6	1.00
>0.6 to 0.7	1.10
>0.7 to 0.8	1.22
>0.8 to 0.9	1.40
>0.9 to 1.0	2.00
$\nabla^{\text {Applied }}$ $=\sqrt{R_{P} P_{\text {Applied }}}$	
$\begin{aligned} R_{P} \quad=\quad & \begin{array}{l}\text { Nominal Total Potentiometer } \\ \\ \text { Resistance }\end{array}\end{aligned}$	
$\mathrm{P}_{\text {Applied }}=$ Power Dissipation	
$V_{\text {Rated }}=250$ Volts for RP06, RP10	
$=500$ Votts for Others	

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 3.0 G_{M} 16 N_{S} 7.0 N_{U} 28 $A_{I C}$ 8.0 $A_{I F}$ 12 $A_{U C}$ N / A $A_{U F}$ N / A $A_{R W}$ 38 S_{F} .50 M_{F} N/A M_{L} N / A C_{L} N / A	

Construction Class Factor $-\pi_{\mathrm{C}}$

Construction Class	Style	π_{C}
Enclosed	RP07, RP11, RP16	2.0
Unenclosed	All Other Styles are Unenclosed	1.0

$\lambda_{b}=.019 \exp \left(.445\left(\frac{T+273}{358}\right)^{7.3}\right) x$ $\exp \left(\frac{S}{2.69}\left(\frac{T+273}{273}\right)^{2.46}\right)$
$\mathrm{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.

DESCRIPTION
Variable, Nonwirewound (Adjustment Types)
Variable, Nonwirewound (Adjustment Types),
Established Reliability
Failures $/ 10^{6}$ Hours

Potentiometer Taps Factor $-\pi_{\text {TAPS }}$

${ }^{\text {TAPS }}$	${ }^{\text {T TAPS }}$	${ }^{\text {N TAPS }}$	${ }^{\pi}$ TAPS	${ }^{\text {T TAPS }}$	${ }^{\text {T TAPS }}$
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
$\pi_{\text {TAPS }}=\frac{\left(\mathrm{N}_{\text {TAPS }}\right)}{25}+0.792$					
$\begin{aligned} N_{\text {TAPS }}= & \text { Number of Potentiometer Taps. } \\ & \text { including the Wiper and Terminations. } \end{aligned}$					

Environment Factor $-\pi_{E}$

Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	14
N_{S}	6.0
N_{U}	24
$A_{I C}$	5.0
$A_{I F}$	7.0
$A_{U C}$	12
$A_{U F}$	18
$A_{R W}$	39
S_{F}	.50
M_{F}	22
M_{L}	57
C_{L}	1000

Quality Factor $-\pi_{\mathrm{Q}}$
Quality π_{Q} S .020 R .060 P .20 M .60 MIL-R-22097 3.0 Lower 10

9.14 RESISTORS, VARIABLE, COMPOSITION

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-94	RV	Variable, Composition, Low Precision
	$\lambda_{p}=\lambda_{b} \pi_{\text {TAPS }} \pi_{R} \pi_{V} \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours	

Base Faiture Rate - λ_{t}					
	Stress				
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 027	. 030	. 032	. 035	. 038
10	. 028	. 031	. 034	. 038	. 042
20	. 029	. 033	. 037	. 042	. 048
30	. 031	. 036	. 041	. 048	. 056
40	. 033	. 039	. 047	. 056	. 067
50	. 036	. 044	. 054	. 067	. 082
60	. 039	. 050	. 065	083	. 11
70	. 045	. 060	. 08	. 11	. 14
80	. 053	. 074	. 10	. 15	
90	. 065	. 096	. 14		
100	. 084	. 13			
110	. 11				
$\begin{aligned} \lambda_{b}= & .0246 \exp \left(.459\left(\frac{T+273}{343}\right)^{9.3}\right) x \\ & \exp \left(\frac{S}{2.32}\left(\frac{T+273}{273}\right)^{5.3}\right) \\ T= & \text { Ambient Temperature (} \left.{ }^{\circ} \mathrm{C}\right) \\ S= & \begin{array}{l} \text { Ratio of Operating Power to Rated Power. } \\ \text { See Section } 9.16 \text { for S Calculation. } \end{array} \end{aligned}$					

Resistance Factor $-\pi_{R}$	
Resistance Range (ohms)	π_{R}
50 to 50 K	1.0
$>50 \mathrm{~K}$ to 100 K	1.1
$>100 \mathrm{~K}$ to 200 K	1.2
$>200 \mathrm{~K}$ to 500 K	1.4
$>500 \mathrm{~K}$ to 1 M	1.8

Potentiometer Taps Factor - $\pi_{\text {TAPS }}$					
${ }^{\mathrm{N}}$ TAPS	${ }^{\text {TAPS }}$	${ }^{\text {TAPS }}$	${ }^{\text {T TAPS }}$	${ }^{\text {TAPS }}$	${ }^{\text {T TAPS }}$
3	1.0	13	2.7	23	5.2
4	1.1	14	2.9	24	5.5
5	1.2	15	3.1	25	5.8
6	1.4	16	3.4	26	6.1
7	1.5	17	3.6	27	6.4
8	1.7	18	3.8	28	6.7
9	1.9	19	4.1	29	7.0
10	2.1	20	4.4	30	7.4
11	2.3	21	4.6	31	7.7
12	2.5	22	4.9	32	8.0
$\begin{aligned} & \pi_{\text {TAPS }}=\frac{\left(N_{\text {TAPS }}\right)^{\frac{3}{2}}}{25}+0.792 \\ & N_{\text {TAPS }}=\begin{array}{l} \text { Number of Potentiometer Taps, } \\ \text { including the Wiper and Terminations. } \end{array} \end{aligned}$					

MIL-HDBK-217F

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 19 N_{S} 8.0 N_{U} 29 $A_{I C}$ 40 $A_{i F}$ 65 $A_{U C}$ 48 $A_{U F}$ 78 $A_{R W}$ 46 S_{F} .50 M_{F} 25 M_{L} 66 C_{L} 1200	

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-SPEC	2.5
Lower	5.0

SPECIFICATION	STYLE	DESCRIPTION
MIL-R-39023	RQ	Variable, Nonwirewound, Film, Precision
MIL-R-23285	RVC	
	$\lambda_{p}=\lambda_{b} \pi_{\text {TAPS }} \pi_{R} \pi^{2} \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours	

Base Failure Rate $-\lambda_{D}$ (RQ Style Only)					
Stress					
$\left.T_{A}{ }^{(0}{ }^{\circ}\right)$. 1	. 3	. 5	. 7	. 9
0	. 023	. 024	. 026	. 028	. 031
10	. 024	. 026	. 029	. 031	. 034
20	. 026	. 029	. 032	. 035	. 039
30	. 028	. 032	. 036	. 040	. 045
40	. 032	. 036	. 041	. 047	. 053
50	. 037	. 042	. 049	. 057	. 065
60	. 044	. 051	. 060	. 070	. 083
70	. 053	. 064	. 076	. 091	. 11
80	. 068	. 083	. 10	. 12	
90	. 092	. 11	. 14		
100	. 13	. 17			
110	. 20				
$\begin{aligned} \lambda_{\mathrm{b}} & =.018 \exp \left(\frac{T+273}{343}\right)^{7.4} \mathrm{x} \\ & \exp \left(\left(\frac{\mathrm{~S}}{2.55}\right)\left(\frac{\mathrm{T}+273}{273}\right)^{3.6}\right) \end{aligned}$					
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)					
	- Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.				

Resistance Factor - π_{R}	
Resistance Range (Ohms)	π_{R}
Up to 10 K	1.0
$>10 \mathrm{~K}$ to 50 K	1.1
$>50 \mathrm{~K}$ to 200 K	1.2
$>200 \mathrm{~K} 101 \mathrm{M}$	1.4
$>1 \mathrm{M}$	1.8

Base Failure Rate - λ_{D} (RVC Style Only)					
	Stress				
$T_{\hat{A}}\left({ }^{(0}\right)$. 1	. 3	5	. 7	9
0	. 028	. 031	. 033	. 036	. 039
10	. 029	. 032	. 035	. 038	. 042
20	. 030	. 033	. 037	. 041	. 046
30	. 031	. 035	. 040	. 045	. 051
40	. 032	. 037	. 043	. 050	. 058
50	. 034	. 040	. 047	. 056	. 066
60	. 036	. 044	. 053	. 064	. 078
70	. 039	. 049	. 060	. 075	. 093
80	. 043	. 055	. 070	. 09	. 11
90	. 048	. 063	. 083	. 11	. 15
100	. 055	. 075	. 10	. 14	. 19
110	. 064	. 091	. 13	. 18	. 26
120	. 077	. 11	. 17	. 25	. 37
130	. 096	. 15	. 23	. 36	. 55
140	. 12	. 20	. 33	. 53	
150	. 17	. 29	. 50		
160	. 24	. 44			
170	. 37				
$\begin{aligned} \lambda_{b}= & .0257 \exp \left(\frac{T+273}{398}\right)^{7.9} \times \\ & \exp \left(\left(\frac{S}{2.45}\right)\left(\frac{T+273}{273}\right)^{4.3}\right) \end{aligned}$					
T $=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)					
	Ratio of Operating Power to Rated Power. See Section 9.16 for S Calculation.				

MIL-HDBK-217F

Potentiometer Taps Factor - $\pi_{\text {TAPS }}$						Quality Factor π_{Q}	
$\mathrm{N}_{\text {TAPS }}$	${ }_{\text {Taps }}$	$N_{\text {TAPS }}$	${ }_{\text {TAPS }}$	$N_{\text {taps }}$	${ }_{\text {TAPS }}$	Quality	π_{Q}
3	1.0	13	2.7	23	5.2	MIL-SPEC	2
4	1.1	14	2.9	24	5.5	Lower	4
5	1.2	15	3.1	25	5.8		
6	1.4	16	3.4	26	6.1	Environment Factor - π_{E}	
7	1.5	17	3.6	27	6.4		
8	1.7	18	3.8	28	6.7		${ }^{\text {n }}$ E
						G_{B}	1.0
9	1.9	19	4.1	29	7.0	G_{F}	3.0
10	2.1	20	4.4	30	7.4	G_{M}	14
11	2.3	21	4.6	31	7.7	N_{S}	7.0
12	2.5	22	4.9	32	8.0	N_{u}	24
$\begin{aligned} & \pi_{\text {TAPS }}=\frac{\left(N_{\text {TAPS }}\right)^{\frac{3}{2}}}{25}+0.792 \\ & N_{\text {TAPS }}=\begin{array}{l} \text { Number of Potentiometer Taps, } \\ \text { including the Wiper and Terminations. } \end{array} \end{aligned}$						$A_{1 C}$	6.0
						AIF	12
						${ }^{\text {A }}$ UC	20
						A UF	30
						$A_{\text {RW }}$	39
Vottage Factor - π,						S_{F}	. 50
						M_{F}	22
$\frac{\text { Applied Voltage }}{\text { Rated Voltage }}$				$\pi \mathrm{V}$		M_{L}	57
0.00							1000

$\cdot V_{\text {Appliod }}$	$=\sqrt{R_{P} P_{\text {Applied }}}$
R_{P}	$=$Nominal Total Potentiometer Resistance
$P_{\text {Applied }}=$	Power Dissipation
$V_{\text {Rated }}=$	250 Volts for RQ090, 110, 150, 200,
	300
$=$	500 Volts for RQ100, 160. 210
$=$	350 Vots for RVC5, 6

Stress Ratio (S) Calculation for Rheostats

Stress Ratio (S) Calculation for Potentiometers Connected Conventionally

$P_{\text {Applied }}=$ Equivalent powor input to the potentiometer when in is not loaded (i.e., wiper lead disconnected). Calculate as follows:
$P_{\text {Applied }}=\frac{v_{i n}{ }^{2}}{R_{p}}$
$v_{\text {in }}=$ Input Voltage
$\mathrm{f}_{\mathrm{P}}=$ Nominal Totâl Potentiometer Resistance

PRATED $=$ Power Rating of Potentiometer
$\pi_{\text {GANGED }}=$ Factor to correct for the reduction in effective rating of the potentiometer due te the close proximity of two or more potentiometers when they are ganged togather on a common shatt. Soo below.

KEff

- Correction factor for the electrical loading effiect on the wiper confact of the potentiometer. He value is a function of the type of potentiometer, its resistance. and the hoad resistance. Ses next page.

Ganged-Potentiometer Factor - $\pi_{\text {GANGED }}$

Number of Sections	First Potentiometer Next to Mount	Second in Gang	Third in Gang	Fourth in Gang	Fith in Gang	Sixth in Gang
Singlo	1.0	Alot Applicable				
Two	0.75	0.60	Not Applicable			
Three	0.75	0.50	0.60	Not Applicable		
Four	0.75	0.50	0.50	0.60	Not	Applicablo
Five	0.75	0.50	0.40	0.50	0.60	Aot Ápolicáblo
Six	0.75	0.50	0.40	0.40	0.50	0.60

	K_{H}			
$\mathrm{R}_{\text {L }} / R_{P}$	0.2	0.3	0.5	1.0
0.1	. 04	. 03	. 02	. 01
0.2	. 13	. 09	. 05	. 03
0.3	. 22	. 16	. 10	. 05
0.4	. 31	. 23	. 15	. 08
0.5	. 38	. 29	. 20	. 11
0.8	. 45	. 35	. 25	. 14
0.7	. 51	. 40	. 29	. 17
0.8	. 55	. 45	. 33	. 20
0.9	. 59	. 49	. 37	. 22
1.0	. 63	. 53	. 40	. 25
1.5	. 74	. 65	. 53	. 36
2.0	. 80	. 73	. 62	. 44
3.0	. 87	. 81	. 72	. 56
4.0	. 90	. 86	. 78	. 64
5.0	. 92	. 88	. 82	. 69
10.0	. 96	. 94	. 90	. 83
100.0	1.00	. 99	. 99	. 98
$\pi_{\text {EFF }}$				
				variable he total
		$\begin{aligned} & \operatorname{tance} \\ & \text { one er } \end{aligned}$	$\begin{aligned} & \text { een th } \\ & \text { the po } \end{aligned}$	per arm ometer
R_{p}	-	Nominal Total Potentiometer		
		istanc		
K_{H}	-	Cons	See	Table.

Potentiometer MK-SPEC	Style Type	K_{H}
MIL-R-19	RA	0.5
MIL-R-22	RP	1.0
Mr-R-94	RV	0.5
MIL-R-12934	RR1000, 1001,	0.3
	1003. 1400,	
	2100, 2101,	
	2102, 2103	
MIL-R-12934	All Oher Types	0.2
MIL-R-22097	Rل111, RJ12	0.3
MIL-R-22097	All Other Types	0.2
MIL-R-23285	RVC	0.5
MIL-R-27208	RT22, 24, 26, 27	0.2
MHL-R-27208	AH Other Types	0.3
MIL-R-39002	RK	0.5
MIL-R-39015	RTR 22, 24	0.2
MIL-R-39015	RTR12	0.3
MIL-R-39023	RO	0.3
MIL-R-39035	RJR	0.3

MIL-HDBK-217F

Example

Given: Type RV1SAYSA505A variable 500K ohm resistor procured per MIL-R-94, rated at 0.2 watts is being used in a fixed ground environment. The resistor ambient temperature is $40^{\circ} \mathrm{C}$ and is dissipating 0.06 watts. The resistance connected to the wiper contact varies between 1 megohm and 3 megohms. The potentiometer is connected conventionally without ganging.

The appropriate model for RV style variable resistors is given in Section 9.14. Based on the given information the following model factors are determined from the tables shown in Section 9.14 and by following the procedure for determining electrical stress for potentiometers as described in Section 9.16.

From Section 9.16
P $_{\text {APPLIED }}=.06 \mathrm{~W}$
$\pi_{\text {EFF }}=.62$
$\pi_{\text {GANGED }}=1.0$
$\pi_{\text {RATED }}=.2 \mathrm{~W}$
$\mathrm{K}_{\mathrm{H}}=.5$ for MIL-R-94 (Section 9.16 Table)
Not Ganged (Section 9.16 Table, Single Section, First Potentiometer)
$\pi_{\text {RATED }}=.2 \mathrm{~W}$
$\mathrm{S}=\frac{\text { PaPPLIED }}{\pi_{\text {EFF }} \times \pi_{\text {GANGED }} \times \pi_{\text {RATED }}}=\frac{.06}{(.62)(1.0)(.2)}=.48$

From Section 9.14

λ_{b}	$=$.047
π_{R}	$=$	1.4
$\pi_{\text {TAPS }}$	$=1.0$	
π_{V}	$=1.0$	

$T_{A}=40^{\circ} \mathrm{C}$, S Rounded to .5
500 K ohms
3 Taps, Basic Single Potentiometer
$V_{\text {RATED }}=250$ Volts for RV1 prefix
$V_{\text {APPLIED }}=\sqrt{(500,000)(.06)}=173$ volts
$V_{\text {APPLIED }} N_{\text {RATED }}=\frac{173}{250}=.69$

π_{Q}	$=2.5$
π_{E}	$=2.0$

$\lambda_{\mathrm{P}} \quad=\quad \lambda_{\mathrm{B}} \pi_{\mathrm{TAPS}} \pi_{R} \pi_{V} \pi_{\mathrm{Q}} \pi_{E}$
$=(.047)(1.0)(1.4)(1.0)(2.5)(2.0)=.33$ Failures $/ 10^{6}$ Hours

SPECIFICATION

MIL-C-25
MIL-C-12889

STYLE

CP
CA

DESCRIPTION
Paper, By-pass, Filter, Blocking, DC
Paper, By-pass, Radio Interference Reduction AC and DC

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{C V^{\pi} Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$
$\left(T=85^{\circ} \mathrm{C}\right.$ Max Rated)
(All MIL-C-12889; MIL-C-25 Styles CP25, 26, 27, 28, 29. $40,41,67,69,70,72,75,76,77,78,80,81,82$;

Characteristics E, F)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00088	.0011	.0036	.015	.051
10	.00089	.0011	.0036	.016	.052
20	.00092	.0011	.0037	.016	.054
30	.00097	.0012	.0039	.017	.057
40	.0011	.0013	.0044	.019	.063
50	.0013	.0016	.0052	.022	.075
60	.0017	.0021	.0069	.030	.10
70	.0027	.0034	.011	.048	.16
80	.0060	.0074	.024	.10	.35

$\lambda_{b}=.00086\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate $-\lambda_{D}$
($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-25 Styies CP 4. 5, 8, 9, 10, 11, 12 13;
Characteristic K)

$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00086	.0011	.0035	.015	.051
10	.00087	.0011	.0035	.015	.051
20	.00087	.0011	.0035	.015	.051
30	.00088	.0011	.0035	.015	.051
40	.00089	.0011	.0036	.015	.052
50	.00091	.0011	.0037	.016	.053
60	.00095	.0012	.0039	.017	.056
70	.0010	.0013	.0041	.018	.060
80	.0011	.0014	.0046	.020	.067
90	.0014	.0017	.0056	.024	.081
100	.0019	.0023	.0076	.033	.11
110	.0030	.0037	.012	.052	.18
120	.0063	.0078	.026	.11	.37

$\lambda_{b}=.00086\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
S - Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

MIL-HDBK-217F

10.1 CAPACITORS, FIXED, PAPER, BY-PASS

Capacitance Factor $-\pi_{\mathrm{CV}}$	
Capacitance, $\mathrm{C}(\mu \mathrm{F})$	π_{CV}
MIL-C-25	
.0034	0.7
.15	1.0
2.3	1.3
16.	1.6
MIL-C-12889	1.0
All	

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-SPEC	3.0
Lower	7.0

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 9.0 N_{S} 5.0 N_{U} 15 $A_{I C}$ 6.0 $A_{i F}$ 8.0 $A_{U C}$ 17 $A_{U F}$ 32 $A_{R W}$ 22 S_{F} .50 M_{F} 12 M_{L} 32 C_{L} 570	

10.2 CAPACITORS, FIXED, PAPER, FEED-THROUGH

SPECIFICATION MIL-C-11693			STYLE CZR and CZ		
$\begin{gathered} \text { Base Failure Rate }-\lambda_{\mathrm{b}} \\ \left(T=85^{\circ} \mathrm{C}\right. \text { Max Rated) } \\ (\text { Characteristics } \mathrm{E}, \mathrm{~W}) \end{gathered}$					
Stress					
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 0012	. 0014	. 0047	. 020	. 069
10	. 0012	. 0015	. 0048	. 021	. 070
20	. 0012	. 0015	. 0050	. 021	. 072
30	. 0013	. 0016	. 0053	. 023	. 076
40	. 0014	. 0018	. 0058	. 025	. 084
50	. 0017	. 0021	. 0069	. 030	. 10
60	. 0023	. 0028	. 0092	. 039	. 13
70	. 0037	. 0045	. 015	. 064	. 21
80	. 0080	. 0099	. 032	. 14	. 47
$\lambda_{b}=.00115\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$ $T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$ $S=$ Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate - λ_{b}
($T=125^{\circ} \mathrm{C}$ Max Rated)
(Characteristic K)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	1	3	. 5	. 7	. 9
0	. 0012	. 0014	. 0047	. 020	. 068
10	. 0012	. 0014	. 0047	. 020	. 068
20	. 0012	. 0014	. 0047	. 020	. 068
30	. 0012	. 0014	. 0047	. 020	. 069
40	. 0012	. 0015	. 0048	. 021	. 070
50	. 0012	. 0015	. 0049	. 021	. 072
60	. 0013	. 0016	. 0052	. 022	. 075
70	. 0014	. 0017	. 0055	. 024	. 08
80	. 0015	. 0019	. 0062	. 027	. 09
90	. 0019	. 0023	. 0075	. 032	. 11
100	. 0025	. 0031	. 010	. 044	. 15
110	. 0040	. 005	. 016	. 07	. 24
120	. 0084	. 010	. 034	. 15	49

$\lambda_{b}=.00115\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$\mathrm{T}=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

DESCRIPTION
Paper, Metallized Paper, Metallized Plastic, RFI
Feed-Through Established Reliability and Non-Established Reliability

Failures $/ 10^{6}$ Hours
Base Failure Rate - λ_{b} ($\mathrm{T}=150^{\circ} \mathrm{C}$ Max Rated) (Characteristic P)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.0012	.0014	.0047	.020	.068
10	.0012	.0014	.0047	.020	.068
20	.0012	.0014	.0047	.020	.068
30	.0012	.0014	.0047	.020	.068
40	.0012	.0014	.0047	.020	.068
50	.0012	.0015	.0048	.020	.069
60	.0012	.0015	.0048	.021	.070
70	.0012	.0015	.0049	.021	.079
80	.0013	.0016	.0051	.022	.074
90	.0013	.0017	.0055	.023	.079
100	.0015	.0018	.0060	.026	.087
110	.0017	.0022	.0071	.03	.10
120	.0022	.0028	.0091	.039	.13
130	.0033	.0040	.013	.057	.19
140	.0058	.0072	.024	.10	.34
150	.014	.017	.057	.24	.82

$$
\lambda_{b}=.00115\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{423}\right)^{18}\right)
$$

$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality π_{Q} M 1.0 Non-Established Reliability 3.0 Lower 10	

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 9.0 N_{S} 7.0 N_{U} 15 $A_{I C}$ 6.0 $A_{I F}$ 8.0 $A_{U C}$ 17 $A_{U F}$ 28 $A_{R W}$ 22 S_{F} .50 M_{F} 12 M_{L} 32 C_{L} 570	

10.3 CAPACITORS, FIXED, PAPER AND PLASTIC FILM

SPECIFICATION
MIL-C-14157
MIL-C-19978

STYLE
CPV
CQR and CO

DESCRIPTION
Paper and Plastic Film, Est. Rel.
Paper and Plastic Film, Est. Rel. and Non-Est. Red.

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{C V^{\pi}} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{t}
($T=65^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-14157 Style CPV07;
MIL-C-19978 Characteristics P, L)

$\left.T_{A}{ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00053	.00065	.0021	.0092	.031
10	.00055	.00069	.0022	.0096	.032
20	.00061	.00075	.0025	.011	.036
30	.00071	.00088	.0029	.012	.042
40	.00094	.0012	.0038	.016	.055
50	.0015	.0019	.0061	.026	.088
60	.0034	.0042	.014	.059	.20

$\lambda_{b}=.0005\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{338}\right)^{18}\right)$
$T=A m b i e n t$ Temperature (${ }^{\circ} \mathrm{C}$)
S - Ratio of Operating to Rated Vohage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_{b}
($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-14157 Style CPV09 and MIL-C-19978
Characteristics K, Q, S)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00050	.00062	.0020	.0087	.029
10	.00050	.00062	.0020	.0088	.029
20	.00051	.00062	.0020	.0088	.030
30	.00051	.00063	.0021	.0089	.030
40	.00052	.00064	.0021	.009	.030
50	.00053	.00066	.0021	.0092	.031
60	.00055	.00068	.0022	.0096	.032
70	.00059	.00073	.0024	.010	.035
80	.00067	.00083	.0027	.012	.039
90	.00081	.0010	.0033	.014	.047
100	.0011	.0013	.0044	.019	.064
110	.0018	.0022	.0071	.030	.10
120	.0037	.0045	.015	.064	.21

$\lambda_{b}=.0005\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$\mathrm{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Faikure Rate - λ_{b}

(T = $85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-14157 Style CPV17;
MIL-C-19978 Characteristics E, F, G, M)

$\left.T_{A}{ }^{(}{ }^{(} \mathrm{C}\right)$	Stress				
	. 1	. 3	5	. 7	. 9
0	. 00051	. 00063	. 0021	. 0089	. 030
10	. 00052	. 00064	. 0021	. 0090	. 030
20	. 00054	. 00066	. 0022	. 0093	. 031
30	. 00057	. 00070	. 0023	. 0099	. 033
40	. 00063	. 00077	. 0025	. 011	. 037
50	. 00074	. 00092	. 0030	. 013	. 043
60	. 00099	. 0012	. 0040	. 017	. 058
70	. 0016	. 0020	. 0064	. 028	. 093
80	. 0035	. 0043	. 014	. 061	. 20
$\lambda_{b}=.0005\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$					

$T=A m b i e n t$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_{b}
($\mathrm{T}=170^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-19978 Characteristic T)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00050	.00062	.0020	.0087	.029
10	.00050	.00062	.0020	.0087	.029
20	.00050	.00062	.0020	.0087	.029
30	.00050	.00062	.0020	.0087	.029
40	.00050	.00062	.0020	.0087	.029
50	.00050	.00062	.0020	.0088	.030
60	.00051	.00063	.0021	.0088	.030
70	.00051	.00063	.0021	.0089	.030
80	.00052	.00065	.0021	.0091	.031
90	.00054	.00066	.0022	.0093	.031
100	.00056	.00069	.0023	.0097	.033
110	.00060	.00074	.0024	.010	.035
120	.00067	.00083	.0027	.012	.039
130	.00079	.00098	.0032	.014	.046
140	.0010	.0013	.0041	.018	.060
150	.0015	.0018	.006	.026	.087
160	.0026	.0032	.011	.046	.15
170	.0061	.0075	.025	.11	.36

$\lambda_{b}=.0005\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{443}\right)^{18}\right)$
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
S - Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

MIL-HDBK-217F

MIL-HDBK-217F

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC

SPECIFICATION

MIL-C-18312
MIL-C-39022

STYLE
CH
CHR

DESCRIPTION
Metallized Paper, Paper-Plastic, Plastic
Metallized Paper, Paper-Plastic, Plastic, Established Reliability

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Faikre Rate - λ_{b}
(T - $85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39022 Charactoristic 9 and 12 (50 Vohs rated), Characteristic 49; and MIL-C-18312 Characteristic R)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00070	.00087	.0028	.012	.041
10	.00072	.00089	.0029	.012	.042
20	.00074	.00091	.0030	.013	.043
30	.00078	.00097	.0032	.014	.046
40	.00086	.0011	.0035	.015	.051
50	.0010	.0013	.0041	.018	.06
60	.0014	.0017	.0055	.024	.08
70	.0022	.0027	.0089	.038	.13
80	.0048	.0059	.019	.084	.28

$\lambda_{b}=.00069\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$
$T=A m b i e n t$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$
S - Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate $-\lambda_{b}$

($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39022 Characteristic 9 and 12 (above 50 Volts rated), Characteristics 1, 10, 19, 29, 59; and MIL-C-18312 Characteristic N)

$T_{A}\left({ }^{\circ} C\right)$.1	.3	.5	.7	.9
0	.00069	.00086	.0028	.012	.041
10	.00069	.00086	.0028	.012	.041
20	.00070	.00086	.0028	.012	.041
30	.00070	.00087	.0028	.012	.041
40	.00071	.00088	.0029	.012	.042
50	.00073	.00090	.003	.013	.043
60	.00076	.00094	.0031	.013	.045
70	.00082	.0010	.0033	.014	.048
80	.00092	.0011	.0037	.016	.054
90	.0011	.0014	.0045	.019	.065
100	.0015	.0019	.0061	.026	.088
110	.0024	.0030	.0098	.042	.14
120	.0051	.0063	.020	.088	.30

$\lambda_{b}=.00069\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
S = Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and poak A.C. voltage.

MIL-HDBK-217F

10.4 CAPACITORS, FIXED, METALLIZED PAPER, PAPER-PLASTIC AND PLASTIC
Capacitañee Façór - π_{CV}

Capacitance, $\mathrm{C}(\mu \mathrm{F})$	π_{CV}
0.0029	.70
0.14	1.0
2.4	1.3
$\pi_{\mathrm{CV}}=1.2 \mathrm{C}^{0.092}$	

Quaiity Factor $-\pi_{\mathrm{Q}}$	
Quality π_{Q} S 0.03 R .10 P .30 M 1.0 L 3.0 MIL-C-18312. Non-Est. Rel. 7.0 Lower 20	

Environment Factor $-\pi_{E}$
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 8.0 N_{S} 5.0 N_{U} 14 $A_{I C}$ 4.0 $A_{I F}$ 6.0 $A_{U C}$ 11.0 $A_{U F}$ 20 $A_{R W}$ 20 S_{F} .50 M_{F} 11 M_{L} 29 C_{L} 530

10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

$\begin{aligned} & \text { Base Failure Rate }-\lambda_{\mathrm{b}} \\ & \left(T=85^{\circ} \mathrm{C}\right. \text { Max Rated) } \\ & (\text { Characteristics } M, N) \end{aligned}$					
			ress		
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 0010	. 0012	. 0041	. 018	. 059
10	. 0010	. 0013	. 0042	. 018	. 060
20	. 0011	0013	. 0043	. 018	. 062
30	. 0011	. 0014	. 0045	. 020	. 066
40	. 0012	. 0015	. 0050	. 022	. 073
50	. 0015	. 0018	. 0059	. 026	. 086
60	. 0020	. 0024	. 0079	. 034	. 11
70	. 0032	. 0039	. 013	. 055	. 18
80	. 0069	. 0085	. 028	. 12	. 40
$\lambda_{b}=.00099\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{358}\right)^{18}\right)$					
	Amb	Tempe	ture (${ }^{\circ} \mathrm{C}$)		
	Ratio	Operat	to Rate	Voltag	

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_{D}
($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(Characteristics Q, R, S)

$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00099	.0012	.0040	.017	.058
10	.0010	.0012	.0040	.017	.058
20	.0010	.0012	.0041	.017	.059
30	.0010	.0012	.0041	.018	.059
40	.0010	.0013	.0041	.018	.060
50	.0011	.0013	.0043	.018	.062
60	.0011	.0014	.0044	.019	.064
70	.0012	.0015	.0048	.020	.069
80	.0013	.0016	.0054	.023	.077
90	.0016	.0020	.0065	.028	.094
100	.0022	.0027	.0087	.038	.13
110	.0035	.0043	.014	.06	.20
120	.0073	.0090	.029	.13	.43

$\lambda_{b}=.00099\left[\left(\frac{S}{.4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
S = Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

MIL-HDBK-217F

10.5 CAPACITORS, FIXED, PLASTIC AND METALLIZED PLASTIC

Capacitance Factor $-\pi_{\mathrm{CV}}$	
Capacitanco, $\mathrm{C}(\mu \mathrm{P})$	π_{CV}
0.0049	.70
0.33	1.0
7.1	1.3
38.	1.5
$\pi_{\mathrm{CV}}=1.1 \mathrm{C}^{0.085}$	

Quality Factor $-\pi_{Q}$	
Quality	π_{Q}
S	.030
R	.10
P	.30
M	1.0
Lower	10

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 10 N_{S} 5.0 N_{U} 16 $A_{I C}$ 6 $A_{I F}$ 11 $A_{U C}$ 18 $A_{U F}$ 30 $A_{R W}$ 23 S_{F} .50 M_{F} 13 M_{L} 34 C_{L} 610	

MIL-HDBK-217F

10.6 CAPACITORS, FIXED, SUPER-METALLIZED PLASTIC

SPECIFICATION MIL-C-83421

STYLE CRH

DESCRIPTION

Super-Metallized Plastic, Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Faikure Rate $-\lambda_{D}$ ($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)					
	Stress				
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 00055	. 00068	. 0022	. 0096	. 032
10	. 00055	. 00068	. 0022	. 0096	. 032
20	. 00056	. 00069	. 0023	. 0097	. 033
30	. 00056	. 00069	. 0023	. 0098	. 033
40	. 00057	. 00070	. 0023	. 0099	. 033
50	. 00058	. 00072	. 0024	. 010	. 034
60	. 00061	. 00075	. 0025	. 011	. 036
70	. 00065	. 00081	. 0026	. 011	. 038
80	. 00073	. 00091	. 0030	. 013	. 043
90	. 00089	. 0011	. 0036	. 015	. 052
100	. 0012	. 0015	. 0049	. 021	. 07
110	. 0019	. 0024	. 0078	. 033	. 11
120	. 0040	. 0050	. 016	. 070	. 24
$\lambda_{b}=.00055\left[\left(\frac{S}{4}\right)^{5}+1\right] \exp \left(2.5\left(\frac{T+273}{398}\right)^{18}\right)$					

$T=A m b i e n t$ Temperature (${ }^{\circ} \mathrm{C}$)
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
S	.020
R	.10
P	.30
M	1.0
Lower	10

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	4.0
G_{M}	8.0
N_{S}	5.0
N_{U}	14
A_{l}	4.0
$A_{I F}$	6.0
$A_{U C}$	13.0
$A_{U F}$	20
$A_{R W}$	20
S_{F}	.50
M_{F}	11
M_{L}	29
C_{L}	530

SPECIFICATION

MIL-C-5
MIL-C-39001

styLe
 CM
 CMR

DESCRIPTION
MICA (Dipped or Molded)
MICA (Dipped), Established Reliability

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{C V} \pi_{\mathrm{Q}} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{b} (T. $70^{\circ} \mathrm{C}$ Max Reted) (MIL-C-5, Tomp. Range M)					
$\frac{(M 1 L-C-5, ~ T o m p . ~ R a n g e ~ M) ~}{\text { Stross }}$					
0	. 00030	. 00041	. 00086	0019	0036
10	. 00047	. 00066	. 0014	. 0030	. 0058
20	. 00075	. 0011	. 0022	. 0047	. 0092
30	. 0012	. 0017	. 0035	. 0075	. 015
40	. 0019	. 0027	. 0056	. 012	. 023
50	. 0031	. 0043	. 0089	. 019	. 037
60	. 0049	. 0068	. 014	. 030	. 059
70	. 0078	. 011	. 023	. 049	. 095
$\lambda_{b}=8.6 \times 10^{-10}\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(16\left(\frac{T+273}{343}\right)\right)$					
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$) $S=$ Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Faikure Rate - λ_{b}
($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-5, Temp. Range O; MIL-C-39001 Temp. Range O)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	1	3	. 5	. 7	9
0	. 00005	. 00007	. 00015	00032	. 00062
10	. 00008	. 00011	. 00022	. 00048	. 00093
20	. 00011	. 00016	. 00033	. 00071	. 0014
30	. 00017	. 00024	. 00050	. 0011	. 0021
40	. 00025	. 00036	. 00074	. 0016	. 0031
50	. 00038	. 00053	. 0011	. 0024	. 0046
60	. 00057	. 0008	. 0017	. 0036	. 0069
70	. 00085	. 0012	. 0025	. 0053	. 010
80	. 0013	. 0018	. 0037	. 008	. 016
90	. 0019	. 0027	. 0055	. 012	. 023
100	. 0028	. 0040	. 0083	. 018	. 035
110	. 0042	. 0059	. 012	. 027	. 052
120	0063	. 0089	. 018	. 040	. 077
$\lambda_{b}=8.6 \times 10^{-10}\left[\left(\frac{S}{.4}\right)^{3}+1\right] \exp \left(16\left(\frac{T+273}{398}\right)\right)$					
\dot{s}	Amb Rati	t Tem Op	$\text { ature } 1^{\circ} \mathrm{C}$ $\mathrm{g} \text { to } \mathrm{Ra}$	Voltag	
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate $-\lambda_{b}$$\left(T=85^{\circ} \mathrm{C}\right.$ Max Rated)(MiL-C-5, Temp. Range N)					
Stress					
$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 00017	. 00024	. 00051	. 0011	. 0021
10	. 00027	. 00038	. 00079	. 0017	. 0033
20	. 00042	. 00059	. 0012	. 0027	. 0052
30	. 00066	. 000093	. 0018	. 0042	. 0081
40	. 0010	. 0015	. 003	. 0065	. 013
50	. 0016	. 0023	. 0047	. 010	. 020
60	. 0025	. 0036	. 0074	. 016	. 031
70	. 0040	. 0056	. 012	. 025	. 048
80	0062	. 0087	. 018	039	076
$\lambda_{b}=8.6 \times 10^{-10}\left[\left(\frac{S}{.4}\right)^{3}+1\right] \exp \left(16\left(\frac{T+273}{358}\right)\right)$ $T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$) $S=$ Ratio of Operating to Rated Voltage Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate - λ_{b}
($\mathrm{T}=150^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-5, Temp. Range P; MIL-C-39001, Temp. Range P)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00003	.00004	.00008	.00017	.00033
10	.00004	.00005	.00011	.00024	.00047
20	.00006	.00008	.00017	.00036	.00069
30	.00008	.00012	.00024	.00052	.0010
40	.00012	.00017	.00035	.00076	.0015
50	.00018	.00025	.00051	.0011	.0022
60	.00026	.00036	.00075	.0016	.0031
70	.00038	.00053	.0011	.0024	.0046
80	.00055	.00077	.0016	.0034	.0067
90	.0008	.0011	.0023	.0050	.0098
100	.0012	.0016	.0034	.0073	.014
110	.0017	.0024	.0050	.011	.021
120	.0025	.0035	.0073	.016	.030
130	.0036	.0051	.011	.023	.044
140	.0053	.0074	.15	.033	.065
150	.0078	.011	.023	.049	.095

$\lambda_{b}=8.6 \times 10^{-10}\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(16\left(\frac{T+273}{423}\right)\right)$
T - Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$s=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

MIL-HDBK-217F
10.7 CAPACITORS, FIXED, MICA

Capacitance Factor $-\pi_{\mathrm{CV}}$	
Capacitance, C (pF)	π_{CV}
2	.50
38	.75
300	1.0
2000	1.3
8600	1.6
29000	1.9
84000	2.2

Quality Factor - π_{Q}	
Quality	π_{Q}
T	. 010
S	. 030
R	. 10
P	. 30
M	1.0
L	1.5
Mill-C-5, Non-Est. Rel. Dipped	3.0
MiL-C-5, Non-Est. Rel. Molded	6.0
Lower	15

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	10
N_{S}	6.0
N_{U}	16
$A_{I C}$	5.0
$A_{I F}$	7.0
$A_{U C}$	22
$A_{U F}$	28
$A_{R W}$	23
S_{F}	.50
M_{F}	13
M_{L}	34
C_{L}	610

MIL-HDBK-217F

$10 . \overline{8}$ CĀPACITŌ̄S, FIXED, MICA, BUTTON

SPECIFICATION MIL-C-10950

STYLE CB

DESCRIPTION MICA, Button Style

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{t} ($\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated) (Style CB50)					
	Stress				
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 0067	. 0094	. 019	. 042	. 082
10	. 0071	. 0099	. 021	. 044	. 086
20	. 0076	. 011	. 022	. 047	. 092
30	. 0082	.011	. 024	. 051	. 10
40	. 009	. 013	. 026	. 056	. 11
50	. 010	. 014	. 029	. 063	12
60	. 012	. 016	. 033	. 072	. 14
70	. 013	. 019	. 039	. 084	. 16
80	. 016	. 023	. 047	. 10	. 20
$\begin{aligned} \lambda_{b} & =.0053\left[\left(\frac{S}{.4}\right)^{3}+1\right] \exp \left(1.2\left(\frac{T+273}{358}\right)^{6.3}\right) \\ T & =\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\ S & =\text { Ratio of Operating to Rated Voltage } \end{aligned}$ Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

$\begin{gathered} \text { Base Faihure Rate }-\lambda_{b} \\ \text { (} T=150^{\circ} \mathrm{C} \text { Max Rated) } \\ \text { (All Types Except CB50) } \end{gathered}$					
	Stress				
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 0058	. 0081	. 017	. 036	. 071
10	. 0059	. 0083	. 017	. 037	. 072
20	. 0061	. 0085	. 018	. 038	. 074
30	0062	. 0087	. 018	. 039	. 076
40	. 0064	. 009	. 019	. 040	. 079
50	. 0067	. 0094	. 019	. 042	. 082
60	. 0070	. 0098	. 020	. 044	. 086
70	. 0074	. 010	. 022	. 046	. 090
80	. 0079	. 011	. 023	. 049	. 096
30	. 0085	. 012	. 025	. 053	. 10
100	. 0093	. 013	. 027	. 058	. 11
110	. 010	. 014	. 03	. 064	. 12
120	. 011	. 016	. 033	. 072	. 14
130	. 013	. 018	. 038	. 082	. 16
140	. 015	021	. 044	. 095	. 18
150	. 018	. 025	. 052	. 11	. 22
$\lambda_{b}=.0053\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(1.2\left(\frac{T+273}{423}\right)^{6.3}\right)$					
$\begin{aligned} T & =\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\ S & =\text { Ratio oi Operating to Raied Voïage } \end{aligned}$					

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.
10.8 CAPACITORS, FIXED, MICA, BUTTON
Quality Factor $-\pi_{\mathrm{Q}}$

Quality	π_{Q}
MIL-C-10950	5.0
Lower	15

Capacitance Factor $-\pi_{\mathrm{CV}}$

Capacitance, C (pF)	π_{CV}
8	.50
50	.76
160	1.0
500	1.3
1200	1.6
2600	1.9
5000	2.2
$\pi_{\mathrm{CV}}=.31 C^{0.23}$	

Environment Factor - π_{E}	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	10
N_{S}	5.0
N_{U}	16
$A_{1 C}$	5.0
$A_{\text {IF }}$	7.0
${ }^{\text {A }}$ UC	22
${ }^{\text {A }}$ UF	28
$A_{\text {RW }}$	23
S_{F}	. 50
M_{F}	13
M_{L}	34
C_{L}	610

$\pi_{C V}=.31 C^{0.23}$

MIL-HDBK-217F
$10 . \overline{9}$ CAPACITOFS, FIXED, GLASS

SPECIFICATION		
MIL-C-11227	STYLE	DESCRIPTION
MLL-C-23269	CYR	Glass
		Glass, Established Reliability
	$\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E}$	Failures $/ 10^{6}$ Hours

Base Faiture Rate $-\lambda_{b}$
($T=125^{\circ} \mathrm{C}$ Max Rated)
(All MIL-C-23296 and MIL-C-11272 Temp. Range C)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	Stress	.5	.7
0	.00005	.00005	.00010	.00023	.00055
10	.00007	.00008	.00014	.00035	.00083
20	.00011	.00012	.00022	.00052	.0012
30	.00016	.00018	.00032	.00078	.0018
40	.00024	.00027	.00048	.0012	.0028
50	.00036	.00041	.00072	.0017	.0041
60	.00054	.00061	.0011	.0026	.0062
70	.0008	.00091	.0016	.0039	.0092
80	.0012	.0014	.0024	.0058	.014
90	.0018	.0020	.0036	.0087	.021
100	.0027	.0030	.0054	.013	.031
110	.0040	.0045	.0080	.019	.046
120	.0060	.0068	.012	.029	.063

$\lambda_{\mathrm{b}}=8.25 \times 10^{-10}\left[\left(\frac{\mathrm{~S}}{5}\right)^{4}+1\right] \exp \left(16\left(\frac{T+273}{398}\right)\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_{b}
($\mathrm{T}=200^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-11272 Temp. Range D)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	Stress				
0	.00001	.00001	.00002	.00004	.00010		
10	$.0000 \overline{1} 1$.000001	.00002	.00006	.000014		
20	.00002	.00002	.00003	.00008	.00019		
30	.00002	.00003	.00005	.00011	.00027		
40	.00003	.00004	.00007	.00016	.00038		
50	.00005	.00005	.00009	.00022	.00053		
60	.00006	.00007	.00013	.00031	.00074		
70	.00009	.00010	.00018	.00044	.0010		
80	.00013	.00014	.00025	.00061	.0015		
90	.00018	.00020	.00035	.00086	.0020		
100	.00025	.00028	.00050	.0012	.0029		
110	.00035	.00039	.00070	.0017	.0040		
120	.00049	.00055	.00098	.0024	.0056		
130	.00069	.00078	.0014	.0033	.0079		
140	.00096	.0011	.0019	.0047	.011		
150	.0014	.0015	.0027	.0065	.016		
160	.0019	.0021	.0038	.0092	.022		
170	.0027	.0030	.0053	.013	.031		
180	.0037	.0042	.0075	.018	.043		
190	.0052	.0059	.010	.025	.060		
200	.0073	.0083	.015	.035	.084		

$\lambda_{b}=8.25 \times 10^{-10}\left[\left(\frac{S}{5}\right)^{4}+1\right] \exp \left(16\left(\frac{T+273}{473}\right)\right)$
$\mathrm{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

MIL-HDBK-217F

10.9 CAPACITŌ̄S, FIXED, GLASSS

Capacitance Factor - $\pi_{\text {CV }}$		Environment Factor - π_{E}	
Capacitance, C (pF)	${ }^{\pi} \mathrm{CV}$	Environmem	$\pi_{\text {E }}$
1 4	.62 .75	$\begin{aligned} & \mathrm{G}_{\mathrm{B}} \\ & \mathrm{G}_{\mathrm{F}} \\ & \mathrm{G}_{\mathrm{M}} \end{aligned}$	$\begin{gathered} 1.0 \\ 2.0 \\ 10 \end{gathered}$
30 200	1.0 1.3	$\begin{aligned} & \mathrm{N}_{\mathrm{S}} \\ & \mathrm{~N}_{\mathrm{U}} \end{aligned}$	$\begin{aligned} & 6.0 \\ & 16 \end{aligned}$
900	1.6	A_{1}	5.0
3000	1.9	A_{iF}	7.0
		${ }^{\text {A }}$ UC	22
8500	2.2	$A_{\text {UF }}$	28
$\pi_{C V}=0.62 C^{0.14}$		$A_{\text {RW }}$	23
		S_{F}	. 50
Quality Factor $-\pi_{\mathrm{Q}}$		M_{F}	13
		M_{L}	34
Quality	π_{Q}	C_{L}	610
S	. 030		
R	. 10		
P	. 30		
M	1.0		
L	3.0		
MIL-C-11272, Non-Est. Rel.	3.0		
Lower	10		

MIL-HDBK-217F

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE

SPECIFICATION

MIL-C-11015
MIL-C-39014

STYLE
 CK
 CKR

DESCRIPTION
Ceramic, General Puppose
Ceramic, General Purpose, Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{b}
($\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39014 Styles CKR13, 48, 64, 72;
MIL-C-11015 Type A Rated Tomperature)

$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	1	. 3	. 5	. 7	. 9
$\begin{array}{r} 0 \\ 10 \end{array}$. 00067	. 0013	. 0036	. 0088	. 018
	. 00069	. 0013	. 0037	. 0091	. 019
20	. 00071	. 0014	. 0038	. 0093	. 019
30	00073	. 0014	. 0039	. 0096	. 020
40	. 00075	. 0014	. 004	. 0099	. 020
50	. 00077	. 0015	. 0042	. 010	. 021
60	. 00079	. 0015	. 0043	. 010	. 021
70	. 00081	. 0016	. 0044	. 011	. 022
80	. 00083	0016	. 0045	011	. 023
$\lambda_{\mathrm{b}}=.0003$		$\left(\frac{5}{3}\right)^{3}$	$1] \exp$	(273	
	Ambie Ratio	Tempe Operat	ure ($^{\circ} \mathrm{C}$) to Rated	Voltage	
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate - λ_{b}
($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39014 Styles CKR05-12, 14-19, 73, 74; MIL-C-11015 Type B Rated Temperature)

$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	1	. 3	5	. 7	. 9
0	. 00062	0012	0033	0082	. 017
10	. 00063	. 0012	. 0034	. 0084	. 017
20	. 00065	. 0013	. 0035	. 0086	. 018
30	. 00067	. 0013	. 0036	. 0088	. 018
40	. 00068	. 0013	. 0037	. 0090	. 018
50	. 00070	. 0014	. 0038	. 0093	. 019
60	. 00072	. 0014	. 0039	. 0095	. 019
70	. 00074	. 0014	. 0040	. 0097	. 020
80	. 00076	. 0015	. 0041	. 010	. 020
90	. 00077	. 0015	. 0042	. 010	. 021
100	. 00079	. 0015	. 0043	. 010	. 021
110	. 00081	. 0016	. 0044	. 011	. 022
120	00084	. 0016	. 0045	. 011	. 023
$\lambda_{b}=.0003\left[\left(\frac{S}{.3}\right)^{3}+1\right] \exp \left(\frac{T+273}{398}\right)$					
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$ $S=$ Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Base Failure Rate - λ_{0}
($T=150^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-11015 Type C Rated Temperature)

$T_{A}\left({ }^{\circ} C\right)$.1	.3	.5	.7	.9
0	.00059	.0011	.0032	.0078	.016
10	.00061	.0012	.0033	.008	.016
20	.00062	.0012	.0034	.0082	.017
30	.00064	.0012	.0035	.0084	.017
40	.00065	.0013	.0035	.0086	.018
50	.00067	.0013	.0036	.0088	.018
60	.00068	.0013	.0037	.009	.018
70	.00070	.0013	.0038	.0092	.019
80	.00072	.0014	.0039	.0095	.019
90	.00073	.0014	.0040	.0097	.020
100	.00075	.0014	.0041	.0099	.020
110	.00077	.0015	.0042	.010	.021
120	.00079	.0015	.0043	.010	.021
130	.00081	.0016	.0044	.011	.022
140	.00083	.0016	.0045	.011	.022
150	.00085	.0016	.0046	.011	.023

$\lambda_{b}=.0003\left[\left(\frac{S}{3}\right)^{3}+1\right] \exp \left(\frac{T+273}{423}\right)$
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

NOTE: The rated temperature designation (type A. B , or C) is shown in the part number, e.g.,
CKG1AW22M).

MIL-HDBK-217F

10.10 CAPACITORS, FIXED, CERAMIC, GENERAL PURPOSE
Capacitance Factor $-\pi_{\mathrm{CV}}$

Capacitance, $\mathrm{C}(\mathrm{pF})$	π_{CV}
6.0	.50
240	.75
3300	1.0
36,000	1.3
240,000	1.6
$1,100,000$	1.9
$4,300,000$	2.2
$\pi_{\mathrm{CV}}=.41 \mathrm{C}^{0.11}$	

Environment Factor $-\pi_{E}$
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 9.0 $\mathrm{~N}_{\mathrm{S}}$ 5.0 $\mathrm{~N}_{\mathrm{U}}$ 15 $\mathrm{~A}_{\mathrm{K}}$ 4.0 $\mathrm{~A}_{\mathrm{IF}}$ 4.0 $\mathrm{~A}_{\mathrm{UC}}$ 8.0 $\mathrm{~A}_{\mathrm{UF}}$ 12 $\mathrm{~A}_{\mathrm{RW}}$ 20 $\mathrm{~S}_{\mathrm{F}}$.40 M_{F} 13 M_{L} 34 C_{L} 610

Quality Factor $-\pi_{\mathrm{Q}}$

Quality	π_{Q}
S	.030
R	.10
P	.30
M	1.0
L	3.0
MIL-C-11015, Non-Est. Rel.	3.0
Lower	10

MIL-HDBK-217F
10.11 CAPACITORS, FIXED, CERAMIC, TEMPERATURE COMPENSATING AND CHIP

SPECIFICATION
MIL-C-20
MIL-C-55681

STYLE CCR and CC CDR

DESCRIPTION

Ceramic. Temperature Compensating, Est. and Non Est. Rel.
Ceramic, Chip, Est. Rel.

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{b}} \pi_{C V} \pi_{\mathrm{Q}} \pi_{E}
$$

Base Failure Rate - λ_{b}
($\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-20 Styles CC 20, 25, 30, 32, 35, 45, 85, 95-97)

$\mathrm{T}_{\mathbf{A}}{ }^{\circ} \mathrm{C}$ C)	Strese				
	1	. 3	. 5	7	9
0	. 00015	. 00028	. 00080	001	0040
10	. 00022	. 00042	. 0012	. 0029	. 0059
20	. 00033	. 00063	. 0018	. 0043	. 0088
30	. 00049	. 00094	. 0026	. 0064	. 013
40	. 00073	. 0014	. 0039	. 0096	. 020
50	. 0011	. 0021	. 0059	. 014	. 029
60	. 0016	. 0031	. 0088	. 021	. 044
70	. 0024	. 0046	. 013	. 032	. 065
80	. 0036	. 0069	. 019	. 047	. 097
$\lambda_{b}=2.6 \times 10^{-9}\left[\left(\frac{S}{.3}\right)^{3}+1\right] \exp \left(14.3\left(\frac{T+273}{358}\right)\right)$					
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$) S = Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and poak A.C. voltage.					

Base Failure Rate - λ_{b}
($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-20 Styles CC 5-9,13-19, 21, 22, 26, 27, 31, 33,
36, 37, 47, 50-57, 75-79, 81-83, CCR 05-09,13-19, 54-
57, 75-79, 81-83, 90; MIL-C-55681 All CDR Styles)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.00005	.00009	.00027	.00065	.0013
10	.00007	.00014	.00038	.00093	.0019
20	.00010	.00019	.00055	.0013	.0027
30	.00014	.00028	.00078	.0019	.0039
40	.00021	.00040	.0011	.0027	.0056
50	.00030	.00057	.0016	.0039	.008
60	.00042	.00082	.0023	.0056	.011
70	.00061	.0012	.0033	.008	.016
80	.00087	.0017	.0047	.011	.023
90	.0012	.0024	.0068	.016	.034
100	.0018	.0034	.0097	.024	.048
110	.0026	.0049	.014	.034	.069
120	.0037	.0071	.020	.048	.099

$\lambda_{b}=2.6 \times 10^{-9}\left[\left(\frac{S}{3}\right)^{3}+1\right] \exp \left(14.3\left(\frac{T+273}{398}\right)\right.$
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Capacitance Factor $-\pi_{C V}$

Capacitance, $\mathrm{C}(\mathrm{pF})$	π_{CV}
1	.59
7	.75
81	1.0
720	1.3
4,100	1.6
17,000	1.9
58,000	2.2
$\pi_{\mathrm{CV}}=.59 \mathrm{C}^{0.12}$	

Environment Factor $-\pi_{E}$

Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	10
N_{S}	5.0
N_{U}	17
$A_{I C}$	4.0
$A_{I F}$	8.0
$A_{U C}$	16
$A_{U F}$	35
$A_{R W}$	24
S_{F}	.50
M_{F}	13
M_{L}	610
C_{L}	

MIL-HDBK-217F

SPECIFICATION

STYLE
CSR

DESCRIPTION

Tantalum Electrolytic (Solid), Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{S R} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{b}					
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	. 1	. 3	. 5	. 7	. 9
0	. 0042	. 0058	. 012	. 026	. 051
10	. 0043	. 0060	. 012	. 027	. 052
20	. 0045	. 0063	. 013	. 028	. 055
30	. 0048	. 0067	. 014	. 030	. 058
40	. 0051	. 0072	. 015	. 032	. 083
50	. 0057	. 0079	. 016	. 035	. 069
60	. 0064	. 009	. 019	. 040	. 078
70	. 0075	. 011	. 022	. 047	. 092
80	. 0092	. 013	. 027	. 058	. 11
90	. 012	. 017	. 034	. 074	. 14
100	. 016	. 023	. 047	. 10	
110	. 024	. 034	. 07	. 15	
120	. 039	. 054	. 11	. 24	
$\lambda_{b}=.00375\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(2.6\left(\frac{T+273}{398}\right)^{9}\right)$					
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$) $S=$ Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Series Resistance Factor - $\pi_{\text {SR }}$

Circuit Resistance, CR (ohms/volt)	$\pi_{\text {SR }}$
>0.8	.066
>0.6 to 0.8	.10
	>0.4 to 0.6
>0.2 to 0.4	.13
	>0.1 to 0.2
0 to 0.1	.20
CR	$=\frac{.27}{\|c\|}$ Ett. Res. Between Cap. and Pwr. Supply
Voltage Applied to Capacitor	

Capacitance Factor $-\pi_{\mathrm{CV}}$	
Capacitance, $\mathrm{C}(\mu \mathrm{F})$	π_{CV}
.003	0.5
.091	.75
1.0	1.0
8.9	1.3
50	1.6
210	1.9
710	2.2
$\pi_{\mathrm{CV}}=1.0 \mathrm{C}^{0.12}$	

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality π_{Q} D 0.0010 S 0.010 B 0.030 R 0.030 P 0.10 M 0.30 Lower 1.0	1.5

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 8.0 N_{S} 5.0 N_{U} 14 $A_{1 C}$ 4.0 $A_{I F}$ 5.0 $A_{U C}$ 12 $A_{U F}$ 20 $A_{R W}$ 24 S_{F} .40 M_{F} 11 M_{L} 29 C_{L} 530	

MIL-HDBK-217F

10.13 CAPACITORS, FIXED, ELECTROLYTIC, TANTALUM, NON-SOLID

SPECIFICATION	STYLE	DESCRIPTION
MIL-C-3965	CL	Tantalum, Electrolytic (Non-Solid)
MIL-C-39006	CLR	Tamalum, Electrolytic (Non-Solid), Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{C} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{b}
(T $=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-3965 Styles CL24-27, 34-37)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.0021	.0029	.0061	.013	.026
10	.0023	.0032	.0067	.014	.028
20	.0026	.0036	.0075	.016	.031
30	.0030	.0042	.0087	.019	.036
40	.0036	.0051	.011	.023	.044
50	.0047	.0066	.014	.029	.057
60	.0065	.0091	.019	.041	.079
70	.0098	.014	.029	.062	.12
80	.017	.023	.048	.10	.20

Operating voltege is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate - λ_{b}
($T=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-3965 Styles CL20-23, 30-33, 40-43, 46-56, 6467. 70-73; and all MIL-C-39006 Styles)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	1	3	5	7	9
0	. 0018	. 0026	. 0053	. 011	022
10	. 0019	. 0026	. 0055	. 012	. 023
20	. 0020	. 0028	. 0057	. 012	. 024
30	. 0021	. 0029	. 0061	013	026
40	. 0023	. 0032	. 0066	. 014	. 028
50	. 0025	. 0035	. 0072	. 016	. 030
60	. 0028	. 0040	. 0082	. 018	. 034
70	. 0033	. 0046	. 0096	. 021	. 040
80	. 0041	. 0057	. 012	. 025	. 049
90	. 0052	. 0073	. 015	. 033	. 084
100	. 0071	. 010	. 021	. 045	
110	. 011	. 015	. 031	. 066	
120	. 017	. 024	. 050	. 11	
$\lambda_{b}=.00165\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(2.6\left(\frac{T+273}{398}\right)^{9.0}\right)$					

$\mathrm{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating vottage is the sum of applied D.C. vottage and peak A.C. voltage.

Base Failure Rate - λ_{b}
($\mathrm{T}=175^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-3965 Styles CL10, 13, 14, 16-18)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	. 1	. 3	. 5	. 7	. 9
0	. 0017	. 0024	. 0050	. 011	. 021
10	. 0017	. 0024	. 0051	. 011	. 021
20	. 0018	. 0025	. 0052	. 011	. 022
30	. 0018	. 0025	. 0053	. 011	. 022
40	. 0019	. 0026	. 0054	. 012	. 023
50	. 0019	. 0027	. 0056	012	. 023
60	. 002	. 0028	. 0058	. 013	. 024
70	. 0021	. 0030	. 0062	. 013	.026
80	. 0023	. 0032	. 0066	. 014	. 028
90	. 0025	. 0035	. 0072	. 016	. 030
100	. 0028	. 0039	. 0080	. 017	. 034
110	. 0032	. 0044	. 0092	. 020	. 039
120	. 0037	. 0052	. 011	. 023	
130	. 0046	. 0064	. 013	. 029	
140	. 0059	. 0082	. 017	. 037	
150	. 0079	. 011	. 023	. 049	
160	. 011	. 016	. 033	. 071	
170	. 018	. 025	. 051		
$\lambda_{b}=.00165\left[\left(\frac{S}{4}\right)^{3}+1\right] \exp \left(2.6\left(\frac{T+273}{448}\right)^{9.0}\right)$					
$\begin{aligned} & \mathrm{T}=\text { Ambient Temperature }\left({ }^{\circ} \mathrm{C}\right) \\ & \mathrm{S}=\text { Ratio of Operating to Rated Vottage } \end{aligned}$					

Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage

$$
\pi_{\mathrm{CV}}=.82 \mathrm{C}^{0.066}
$$

Construction Factor $-\pi_{\mathrm{C}}$
Construction Type π_{C} Slug, All Tantalum .30 Foil, Hemetic * Sug, Hermetic 1.0 Foil, Non-Hermetic * 2.0 Slug, Non-Hermetic * 2.5

*Type of Seal Identified as Follows:

1) MIL-C-3965 (CL) - Note Last Letter in Part Number: G - Hermetic E - Non-Hermetic

Example: CL10BC700TPG is Hermetic
2) MIL-C-39006 (CLR) - Consult Individual Part Specification Sheet (slash sheet) NOTE:

Foil Types - CL 20-25, 30-33, 40, 41, 51-54, 70-73
CLR 25, 27, 35, 37, 53, 71, 73
Slug Types - CL 10, 13, 14, 16, 17, 18, 55, 56,
64-66, 67
CLR 10, 14, 17, 65, 69, 89
All Tantalum - CL 26, 27, 34-37, 42, 43, 46-49 CLR 79
Quality Factor $-\pi_{\mathrm{Q}}$

Quality	π_{Q}
S	.030
R	.10
P	.30
M	1.0
L	1.5
MIL-C-3965, Non-Est. Rel.	3.0
Lower	10

Environment Factor $-\pi_{E}$

Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	10
N_{S}	6.0
N_{U}	16
$A_{1 C}$	4.0
$A_{I F}$	8.0
$A_{U C}$	14
$A_{U F}$	30
$A_{R W}$	23
S_{F}	.50
M_{F}	13
M_{L}	34
c_{L}	610

MIL-HDBK-217F

SPECIFICATION
MIL-C-39018

STYLE DESCRIPTION CUR and CU

Electrolytic, Aluminum Oxide, Est. Rel. and Non-Est. Rel.

$$
\lambda_{p}=\lambda_{b} \pi_{C V} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$
($\mathrm{T}=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39018 Style 71)

	Stress				
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.0095	.011	.019	.035	.064
10	.012	.015	.024	.046	.084
20	.017	.020	.033	.062	.11
30	.023	.028	.046	.087	.16
40	.034	.042	.068	.13	.23
50	.054	.065	.11	.20	.36
60	.089	.11	.18	.33	.60
70	.16	.19	.31	.58	1.1
80	.29	.35	.58	1.1	2.0

$\lambda_{b}=.00254\left[\left(\frac{S}{.5}\right)^{3}+1\right] \exp \left(5.09\left(\frac{T+273}{358}\right)^{5}\right)$
$\mathbf{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S \quad=\quad$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Faikure Rate $-\lambda_{b}$
($\mathrm{T}=105^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-39018 Styles 16 and 17)

(MIL-C-39018 Styles 16 and 17)					
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.0070	.0084	.014	.026	.047
10	.0085	.010	.017	.031	.057
20	.011	.013	.021	.040	.072
30	.014	.017	.027	.051	.094
40	.019	.022	.037	.069	.13
50	.026	.031	.052	.097	.18
60	.038	.046	.076	.14	.26
70	.059	.071	.12	.22	.40
80	.095	.11	.19	.35	.64
90	.16	.20	.32	.61	1.1
100	.30	.36	.59	1.1	2.0

$\lambda_{b}=.00254\left[\left(\frac{S}{5}\right)^{3}+1\right] \exp \left(5.09\left(\frac{T+273}{378}\right)^{5}\right)$
$\mathrm{T}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Base Failure Rate $-\lambda_{\mathrm{t}}$
($T=125^{\circ} \mathrm{C}$ Max Rated)
(All MIL-C-39018 Styles Except 71, 16 and 17)

$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	Stress				
	. 1	. 3	. 5	. 7	. 9
0	. 0055	. 0067	. 011	. 021	. 038
10	. 0065	. 0078	. 013	. 024	. 044
20	. 0077	. 0093	. 015	. 029	. 052
30	. 0094	. 011	. 019	. 035	. 064
40	. 012	. 014	. 023	. 044	. 080
50	. 015	. 019	. 030	057	. 10
60	. 021	. 025	. 041	. 077	. 14
70	. 029	. 035	. 057	. 11	. 20
80	. 042	. 050	. 083	. 16	. 28
90	. 064	. 077	. 13	. 24	. 43
100	. 10	. 12	. 20	. 38	
110	. 17	. 21	. 34	. 63	
120	. 30	. 37	. 60	1.1	
$\lambda_{b}=.00254\left[\left(\frac{S}{.5}\right)^{3}+1\right] \exp \left(5.09\left(\frac{T+273}{398}\right)^{5}\right)$					
T $=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)					
S - Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.					

Capacitance Factor - $\pi_{\text {ch }} \mathrm{CV}$	
Capaciance, C (μ F)	${ }^{\pi} \mathrm{CV}$
2.5	40
55	70
400	1.0
1700	1.3
5500	1.6
14,000	1.9
32,000	2.2
65,000	2.5
120,000	2.8
${ }^{\pi} C V=34 C^{0.18}$	

Environment Factor $-\pi_{E}$

Environmeni	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	12
N_{S}	6.0
N_{U}	17
$A_{I C}$	10
$A_{I F}$	12
$A_{U C}$	28
$A_{U F}$	35
$A_{R W}$	27
S_{F}	.50
M_{F}	14
M_{L}	38
C_{L}	690

Cuality	π_{Q}
S	.030
R	.10
P	.30
M	1.0
Non-Est. Rei.	3.0
Lower	10

10.15 CAPACITORS, FIXED, ELECTROLYTIC (DRY), ALUMINUM

SPECIFICATION

 MIL-C-62StyLE
CE

DESCRIPTION
Aluminum, Dry Electrolyte, Polarized

$$
\lambda_{p}=\lambda_{b} \pi_{C v} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Faiture Rate - λ_{t}
($T=85^{\circ} \mathrm{C}$ Max Rated)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.0064	.0074	.011	.020	.034
10	.0078	.009	.014	.024	.042
20	.0099	.011	.017	.030	.053
30	.013	.015	.023	.040	.070
40	.018	.021	.031	.055	.098
50	.026	.030	.046	.08	.14
60	.041	.047	.071	.12	.22
70	.068	.078	.12	.21	.36
80	.120	.14	.21	.37	.65
Stress					
$\lambda_{6}=.0028\left[\left(\frac{S}{.55}\right)^{3}+1\right] \exp \left(4.09\left(\frac{T+273}{358}\right)\right.$	$5.9)$				

$T \quad$ - Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
S - Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage año peak A.C. voltage.

Capacitance Factor - π_{CV}	
Capacitance, C ($\mu \mathrm{F}$)	$\pi_{\text {cV }}$
3.2	40
62	70
400	1.0
1600	1.3
4800	1.6
12,000	1.9
26,000	2.2
50,000	2.5
91,000	2.8
$\pi_{C V}=.32 C^{0.19}$	

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-SPEC	3.0
Lower	10

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	12
N_{S}	6.0
N_{U}	17
$A_{I C}$	10
$A_{I F}$	12
$A_{U C}$	28
$A_{U F}$	35
$A_{R W}$	27
S_{F}	.50
M_{F}	14
M_{L}	38
C_{L}	690

SPECIFICATION MIL-C. 81

STYLE CV

DESCRIPTION Variable, Ceramic

$$
\lambda_{P}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{0}$
($T=85^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-81 Styles CV 11, 14, 21, 31, 32, 34, 40, 41)

$T_{A}\left({ }^{\circ} \mathrm{C}\right)$.1	.3	.5	.7	.9
0	.0030	.016	.066	.18	.37
10	.0031	.017	.069	.18	.39
20	.0033	.018	.073	.20	.41
30	.0036	.020	.080	.21	.45
40	.0041	.022	.089	.24	.50
50	.0047	.026	.10	.28	.59
60	.0058	.031	.13	.34	.72
70	.0076	.041	.17	.45	.94
80	.011	.058	.24	.63	1.3
$=$					
$\lambda_{b}=.00224\left[\left(\frac{S}{.17}\right)^{3}+1\right]$ exp $\left(1.59\left(\frac{T+273}{358}\right)^{10.1}\right)$					
T	$=$ Ambient Temperature ($\left.{ }^{\circ} \mathrm{C}\right)$				
S	$=$				
Ratio of Operating to Rated Voltage					
Operating voltage is the sum of applied D.C. voltage					
and peak A.C. voltage.					

Base Fallure Rate $-\lambda_{b}$
($\mathrm{T}=125^{\circ} \mathrm{C}$ Max Rated)
(MIL-C-81 Styles CV 35, 36)

MIL-C-81 Styles CV 35, 36)					
$T_{A}{ }^{\circ}$ C)	.1	.3	.5	.7	.9
0	.0028	.015	.061	.16	.35
10	.0028	.015	.062	.17	.35
20	.0029	.016	.064	.17	.36
30	.0030	.016	.066	.18	.37
40	.0031	.017	.068	.18	.39
50	.0033	.018	.072	.19	.41
60	.0035	.019	.077	.21	.44
70	.0038	.021	.084	.23	.48
80	.0043	.023	.095	.25	.54
90	.0050	.027	.11	.30	.63
100	.0062	.033	.14	.36	.76
110	.0079	.043	.17	.47	.98
120	.011	.059	.24	.64	1.4

$\lambda_{b}=.00224\left[\left(\frac{S}{.17}\right)^{3}+1\right] \exp \left(1.59\left(\frac{T+273}{398}\right)^{10.1}\right)$
$T=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	13
N_{S}	8.0
N_{U}	24
$A_{1 C}$	6.0
$A_{I F}$	10
$A_{U C}$	37
$A_{U F}$	70
$A_{R W}$	36
S_{F}	.40
M_{F}	20
M_{L}	52
C_{L}	950

MIL-HDBK-217F
10.17 CAPACITORS, VARIABLE, PISTON TYPE

SPECIFICATION
 MII-C-14409

Style PC

DESCRIPTION
Variable, Piston Type, Tubular Trimmer

$$
\lambda_{p}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{0} ($T=125^{\circ} \mathrm{C}$ Max Rated) (MIL-C-14409 Styles G, H, J, L, T)					
	Stress				
$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	9
0	. 0030	. 0051	. 013	. 031	. 063
10	. 0041	. 0070	. 018	. 042	. 085
20	. 0055	. 0094	. 024	. 057	. 11
30	. 0075	. 013	. 033	. 077	. 16
40	. 010	. 017	. 044	. 10	. 21
50	. 014	. 024	. 060	. 14	29
60	. 019	. 032	. 082	. 19	. 39
70	. 025	. 043	. 11	. 26	. 53
80	. 034	. 059	. 15	. 35	. 71
90	. 047	. 079	. 20	. 48	. 96
100	. 063	. 11	. 27	. 65	1.3
110	. 086	. 15	. 37	. 88	1.8
120	. 12	. 20	. 51	1.2	2.4
$\begin{aligned} & \lambda_{\mathrm{b}}=7.3 \times 10^{-7}\left[\left(\frac{\mathrm{~S}}{.33}\right)^{3}+1\right] \exp \left(12.1\left(\frac{\mathrm{~T}+273}{398}\right)\right) \\ & \left.\mathrm{T}=\text { Ambient Temperature (}{ }^{\circ} \mathrm{C}\right) \\ & \mathrm{S}=\text { Ratio of Operating to Rated Voltage } \\ & \text { Operating voltage is the sum of applied D.C. voltage } \\ & \text { and peak A.C. voltage. } \end{aligned}$					

Base Failure Rate - λ_{b}
($T=150^{\circ} \mathrm{C}$ Max Rated)
(MiL-C-14409 Characteristic Q)

	Stress				
0	.1	.3	.5	.7	.9
0	.0019	.0032	.0081	.019	.038
10	.0025	.0042	.011	.025	.051
20	.0033	.0056	.014	.034	.068
30	.0044	.0074	.019	.045	.09
40	.0058	.0039	.025	.060	.12
50	.0077	.013	.034	.079	.16
60	.010	.018	.045	.11	.21
70	.014	.023	.060	.14	.28
80	.018	.031	.079	.19	.38
90	.024	.041	.11	.25	.50
100	.032	.055	.14	.33	.67
110	.043	.073	.19	.44	.89
120	.057	.097	.25	.59	1.2
130	.076	.13	.33	.78	1.6
140	.10	.17	.44	1.0	2.1
150	.13	.23	.59	1.4	2.8

$\lambda_{b}=7.3 \times 10^{-7}\left[\left(\frac{S}{.33}\right)^{3}+1\right] \exp \left(12.1\left(\frac{T+273}{423}\right)\right)$
$T=$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$S=$ Ratio of Operating to Rated Vohage
Operating voltage is the sum of applied D.C. vothage and peak A.C. voltage.

MIL-HDBK-217F

10.18 CAPACITORS, VARIABLE, AIR TRIMMER

SPECIFICATION
M!L-C-92

STYLE
CT

DESCRIPTION
Variable, Air Trimmer

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{D}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{b}$ ($T=85^{\circ} \mathrm{C}$ Max Rated)					
	Stress				
$T_{A}\left({ }^{\circ} \mathrm{C}\right)$. 1	. 3	. 5	. 7	. 9
0	. 0074	. 013	. 032	. 076	. 15
10	. 010	. 017	. 044	. 10	. 21
20	. 014	. 023	. 059	. 14	. 28
30	. 018	. 031	. 08	. 19	. 38
40	. 025	. 042	. 11	. 26	. 52
50	. 034	. 057	. 15	. 35	. 70
60	. 046	. 078	. 20	47	94
70	. 062	. 10	. 27	. 63	1.3
80	. 083	. 14	. 36	. 85	1.7

$\lambda_{b}=1.92 \times 10^{-6}\left[\left(\frac{\mathrm{~S}}{.33}\right)^{3}+1\right] \exp \left(10.8\left(\frac{T+273}{358}\right)\right)$

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{P}	3.0
G_{M}	13
N_{S}	8.0
N_{U}	24
$A_{I C}$	6.0
$A_{I F}$	10
$A_{U C}$	37
$A_{U F}$	70
$A_{p W}$	36
S_{F}	.50
M_{F}	20
M_{L}	52
C_{L}	950

$T=A \quad$ Ambient Temperature (${ }^{\circ} \mathrm{C}$)
$S=$ Ratio of Operating to Rated Voltage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voltage.

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
Miil-SPEC	5
Lower	20

MIL-HDBK-217F
10.19 CAPACITORS, VARIABLE AND FIXED, GAS OR VACUUM

SPECIFICATION	STYLE	DESCRIPTION
M!IL-CI 23183	CG	Gas or Vacium Dielectric, Fixed and Variable, Ceramic or
Glass Envelope		

Base Failure Rate - $\boldsymbol{\lambda}_{\boldsymbol{b}}$

$$
\text { (} \mathrm{T}=85^{\circ} \mathrm{C} \text { Max Rated) }
$$

(Styles CG 20, 21, 30, 31, 32, 40-44, 51, 60-64,

$T^{\circ} \mathrm{C}$.1	.3	Siress					
0	.015	.081	.33	.89	1.9			
10	.016	.084	.34	.92	1.9			
20	.017	.090	.37	.98	2.1			
30	.018	.098	.40	1.1	2.2			
40	.020	.11	.45	1.2	2.5			
50	.024	.13	.52	1.4	2.9			
60	.029	.16	.64	1.7	3.6			
70	.038	.20	.83	2.2	4.7			
80	.054	.29	1.2	3.2	6.6			

Base Faiture Rate - λ_{b}
($\mathrm{T}=100^{\circ} \mathrm{C}$ Max Rated)
(Styles CG 65, 66)

Siress					
$T C$.1	.3	.5	.7	.9
0	.014	.078	.30	.85	1.8
10	.015	.080	.33	.87	1.8
20	.015	.084	.34	.91	1.9
30	.016	.088	.36	.96	2.0
40	.018	.095	.39	1.0	2.2
50	.020	.11	.43	1.2	2.4
60	.022	.12	.49	1.3	2.8
70	.027	.14	.59	1.6	3.3
80	.034	.18	.74	2.0	4.2
90	.045	.24	.99	2.7	5.6
100	.066	.36	1.5	3.9	8.2
$\lambda_{b}=.0112\left[\left(\frac{S}{.17}\right)^{3}+1\right] \exp \left(1.59\left(\frac{T+273}{373}\right) 10.1\right)$					

$T=A m b i e n t$ Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$S=$ Patio of Operating to Rated Vohage
Operating voltage is the sum of applied D.C. voltage and peak A.C. voliage.

Environment Factor $-\pi_{E}$	
Environment π_{E} G_{B} 1.0 G_{F} 3.0 G_{M} 14 N_{S} 8.0 N_{U} 27 $A_{I C}$ 10 $A_{I F}$ 18 $A_{U C}$ 70 $A_{U F}$ 108 $A_{R W}$ 40 S_{F} .50 M_{F} N/A M_{L} N/A C_{L} N/A	

MIL-HDBK-217F

Example

Given: A 400 VDC rated capacitor type COO9A1KE153K3 is being used in a fixed ground environment, $55^{\circ} \mathrm{C}$ component ambient temperature, and 200 VDC applied with 50 Vrms @ 60 Hz . The capacitor is being procured in full accordance with the applicable specification.

The letters "CQ" in the type designation indicate that the specification is MIL-C-19978 and that it is a NonEstablished Reliability quality level. The $1 s t$ " K " in the designation indicates characteristic K. The " E " in the designation corresponds to a 400 volt DC rating. The " 153 " in the designation expresses the capacitance in picofarads. The first two digits are significant and the third is the number of zeros to follow. Therefore, this capacitor has a capacitance of 15,000 picofarads. (NOTE: Pico $=10^{-12}, \mu=10^{-6}$)

The appropriate model for CQ style capacitors is given in Section 10.3. Based on the given information the following model factors are determined from the tables shown in Section 10.3. Voltage stress ratio must account for both the applied DC volts and the peak AC voltage, hence,

$$
\begin{array}{ll}
S=.68 & S=\frac{D C \text { Volts Applied }+\sqrt{2(A C ~ V}}{\text { DC Rated Voltage }} \\
\lambda_{b}=.0082 & \frac{200+\sqrt{2}(50)}{400}=.68 \\
\pi_{C V}=.94 & \begin{array}{l}
\text { Substitute } S=.68 \text { and } T_{A}=55^{\circ} \mathrm{C} \text { into } \\
\text { with Characteristic } K \lambda_{b} \text { Table. }
\end{array} \\
\pi_{\mathrm{Q}}=10 & \text { Use Table Equation (Note } 15,000 \mathrm{pF}= \\
\pi_{\mathrm{E}}=2.0 & \\
\lambda_{\mathrm{P}}=\lambda_{\mathrm{B}} \pi_{\mathrm{CV}} \pi_{\mathrm{Q}} \pi_{\mathrm{E}}=(.0082)(.94)(10)(2)=.15 \text { Failures } / 10^{6} \text { Hours }
\end{array}
$$

SPECIFICATION
MIL-T-27
MIL-T-21038
MIL-T-55631
STYLE
TF
TP
-

DESCRIPTION
Audio, Power and High Power Pulse
Low Power Pulse
IF, RF and Discriminator

$$
\lambda_{p}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{b}

	Maximum Rated Operating Temperature (${ }^{\circ} \mathrm{C}$)					
$\mathrm{T}_{\mathrm{HS}}\left({ }^{\circ} \mathrm{C}\right)$	85^{1}	105^{2}	130^{3}	1554	170^{5}	$>170^{6}$
30	. 0024	. 0023	. 0022	. 0021	. 0018	. 0016
35	. 0026	. 0023	. 0023	. 0022	. 0018	. 0016
40	. 0028	. 0024	. 0024	. 0022	. 0019	. 0016
45	. 0032	. 0025	. 0025	. 0022	. 0019	. 0016
50	. 0038	. 0027	. 0026	. 0023	. 0020	. 0017
55	. 0047	. 0029	. 0027	. 0023	. 0020	. 0017
60	. 0060	. 0032	. 0029	. 0023	. 0021	. 0017
65	. 0083	. 0035	. 0030	. 0024	. 0021	. 0017
70	. 012	. 0040	. 0033	. 0025	. 0022	. 0017
75	. 020	. 0047	. 0035	. 0026	. 0023	. 0017
80	. 036	. 0057	. 0039	. 0027	. 0024	. 0017
85	. 075	. 0071	. 0043	. 0028	. 0024	. 0017
90		. 0093	. 0048	. 0029	. 0025	. 0018
95		. 013	. 0054	. 0031	. 0026	. 0018
100		. 019	. 0062	. 0033	. 0027	. 0018
105		. 030	. 0072	. 0035	. 0028	. 0018
110			. 0085	. 0038	. 0030	. 0019
115			. 010	. 0042	. 0031	. 0019
120			. 013	. 0046	. 0032	. 0019
125			. 016	. 0052	. 0034	. 0020
130			. 020	. 0059	. 0036	. 0020
135				. 0068	. 0038	. 0021
140				. 0079	. 0040	. 0021
145				. 0095	. 0042	. 0022
150				. 011	. 0044	. 0023
155				. 014	. 0047	. 0024
160					. 0050	. 0025
165					. 0053	. 0026
170 175					. 0056	. 0027
175 180						. 0029
180 185						$\begin{array}{r} .0030 \\ .0032 \\ \hline \end{array}$

NOTE: The models are valid only if $T_{H S}$ is not above the temperature rating for a given insulation class.
$1 \lambda_{\mathrm{b}}=.0018 \exp \left(\frac{T_{H S}+273}{329}\right)^{155}$
MiL-T-27 Insulation Class Q. MIL-T-21038 insulation Class Q, and MIL-T-55631 insulation Class O.•
$2 \lambda_{b}=.002 \exp \left(\frac{T_{H S}+273}{352}\right)^{14}$
MIL-T-27 Insulation Class R, MIL-T-21038 Insulation Class R, and MIL-T-55631 Insulation Class A.-
$3 \quad \lambda_{b}=.0018 \exp \left(\frac{T_{H S}+273}{364}\right)^{8.7}$
$4 \quad \lambda_{b}=.002 \exp \left(\frac{T_{H S}+273}{400}\right)^{10}$
$5 \lambda_{b}=.00125 \exp \left(\frac{T_{H S}+273}{398}\right)^{38}$
$6 \quad \lambda_{b}=.00150 \exp \left(\frac{T_{H S}+273}{477}\right)^{8.4}$
$T_{H S}=$ Hol Spoi Temperature (${ }^{\circ} \mathrm{C}$). See Section 11.3.
MIL-T-27 Insulation Class S. MIL-T-21038 Insulation Class S, and MIL-T-55631 Insulation Class B.*
MIL-T-27 Insulation Class V, MIL-T-21038 Insulation Class T, and MIL-T-55631 Insulation Class C.

Mil -T-27 Insulation Class T and MIL-T-21038 Insulation Class U.*

MIL-T-27 Insulation Class U and MIL-T-21038 Insulation Class V.
-Refer to Transformer Applicution Note for Determination of Insulation Class

Quality Factor - π_{Q}
Family Type MIL-SPEC Lower Pulse Transformers 1.5 5.0 Audio Transformers 3.0 7.5 Power Transformers and Filters 8.0 30 RF Transformers 12 30 - Refor to Transformer Appllcation Note for Determination of Famlly Type

| Environment Factor $-\pi_{E}$ |
| :---: | :---: |
| Environment π_{E}
 G_{B} 1.0
 G_{F} 6.0
 G_{M} 12
 N_{S} 5.0
 N_{U} 16
 $A_{I C}$ 6.0
 $A_{I F}$ 8.0
 $A_{U C}$ 7.0
 $A_{U F}$ 9.0
 $A_{R W}$ 24
 S_{F} .50
 M_{F} 13
 M_{L} 34
 C_{L} 610 |

Family Type Codes Are:
Power Transformer and Fiter: 01 thru 09, 37 thru 41
Audio Transformer: 10 thru 21, 50 thru 53
Pulse Transformer: 22 thru 36, 54
MIL-T-21038 Example Designation

MIL-T-55631. The Transformers are Designated with the following Types, Grades and Classes.

Type 1	Intermediate Frequency Transformer
Type II	Radio Frequency Transformer
Type III	Discriminator Transformer
Grade 1	For Use When Immersion and Moisture Resistance Tests are Required
Grade 2	For Use When Moisture Resistance Test is Required
Grade 3	For Use in Sealed Assemblies
Class O	- $85^{\circ} \mathrm{C}$ Maximum Operating Temperature
Class A	- $105^{\circ} \mathrm{C}$ Maximum Operating Temperature
Class B	$125^{\circ} \mathrm{C}$ Maximum Operating Temperature
Class C	$>125^{\circ} \mathrm{C}$ Maximum Operating Temperature

The class denotes the maximum operating temperature (temperature rise plus maximum ambient temperature).

SPECIFICATION
 MIL-C-15305

STYLE
 -
 -

$$
\lambda_{p}=\lambda_{b} \pi_{C} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

DESCRIPTION

Fixed and Variable, RF
Molded, RF, Est. Rel.

Base Failure Rate $-\lambda_{b}$				
$T_{H S}\left({ }^{\circ} \mathrm{C}\right)$	85^{1}	105^{2}	125^{3}	150^{4}
30	.00044	.00043	.00039	.00037
35	.00048	.00044	.0004	.00037
40	.00053	.00046	.00042	.00037
45	.0006	.00048	.00043	.00038
50	.00071	.00051	.00045	.00038
55	.00087	.00055	.00048	.00039
60	.0011	.0006	.00051	.0004
65	.0015	.00067	.00054	.00041
70	.0023	.00076	.00058	.00042
75	.0037	.00089	.00063	.00043
80	.0067	.0011	.00069	.00044
85	.014	.0013	.00076	.00046
90		.0018	.00085	.00047
95		.0024	.00096	.0005
100		.0036	.0011	.00052
105		.0057	.0013	.00055
110			.0015	.00059
115			.0018	.00063
120			.0022	.00068
125			.0028	.00075
130				.00083
135				.00093
140				.0011
145				.0014
150				

NOTE: The models are valid only if $T_{H S}$ is not above the temperature rating for a given insulation class.

$$
\begin{array}{ll}
\text { 1. } \lambda_{\mathrm{b}}=.000335 \exp \left(\frac{\mathrm{~T}_{\mathrm{HS}}+273}{329}\right)^{15.6} & \begin{array}{l}
\text { MIL.C-15305 } \\
\text { Insulation Class } \mathrm{O} .
\end{array} \\
2 & \lambda_{\mathrm{b}}=.000379 \exp \left(\frac{T_{H S}+273}{352}\right)^{14} \quad \begin{array}{l}
\text { MIL-C-15305 } \\
\text { Insulation Class } A \text { and } \\
\text { MIL-. } \\
\text { Insulaton Class } A .
\end{array}
\end{array}
$$

3

$$
\begin{aligned}
& \lambda_{\mathrm{b}}=.000319 \exp \left(\frac{T_{\mathrm{HS}}+273}{384}\right)^{8.7} \quad \begin{array}{l}
\text { MIL-C. } 15305 \\
\text { Insulation Class B and } \\
\text { MLI-C. } 39010 \\
\text { Insulation Class B. }
\end{array} \\
& \lambda_{\mathrm{b}}=00035 \exp \left(\frac{T_{\mathrm{HS}}+273}{409}\right)^{10} \quad \begin{array}{l}
\text { MLL-C. } 15305 \\
\text { Insulation Class } \mathrm{C} \text { and } \\
\text { MIL-C. } 39010 \\
\text { Insulation Class } \mathrm{F}:
\end{array}
\end{aligned}
$$

$$
T_{H S}=\text { Hot Spol Temperature }\left({ }^{\circ} \mathrm{C}\right) \text {, See Section } 11.3 .
$$

-Refor to Coil Appilication Note tor Dotermination of Insulation Class.

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
S	.03
R	.10
P	.30
M	1.0
MIL-C-15305	4.0
Lower	20

MIL-HDBK-217F

Environment Factor - π_{E}

Environment	π_{E}
G_{B}	1.0
G_{F}	4.0
G_{M}	12
N_{S}	5.0
N_{U}	16
$A_{I C}$	5.0
$A_{I F}$	7.0
$A_{U C}$	6.0
$A_{U F}$	8.0
$A_{R W}$	24
S_{F}	.50
M_{F}	13
M_{L}	34
C_{L}	610

COIL APPLICATION NOTE: Insulation Class Datermination From Part Designation
MIL-C-15305. All parts in this specitication are R.F. coils. An example type designation is:

The codes used for the Insulation Class are:

Class C:	$1,2,3$
Class B:	$4,5,6$
Class O:	$7,8,9$
Class A:	$10,11,12$

MIL-C-39010. An example type designation per this specification is:

Hot Spot temperature can be estimated as follows:

$$
T_{H S}=T_{A}+1.1(\Delta T)
$$

where:
$T_{\text {HS }}=$ Hot Spot Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$T_{A}=$ Inductive Device Ambient Operating Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\Delta T=$ Average Temperature Rise Above Ambient $\left({ }^{\circ} \mathrm{C}\right)$
ΔT can either be determined by the appropriate "Temperature Rise" Test Method paragraph in the device base specification (e.g., paragraph 4.8.12 for MIL-T-27E), or by approximation using one of the procedures described below.
ΔT Approximation

Information Known				ΔT Approximation	
	010 Slash -39010/1C -39010/4C ss diating Surfa ss ner Weight er ner Weight 80\% Effici	mber 7C, 9A 11,12	14	$\Delta T=$ $\Delta T=$ $\Delta T=$ $\Delta T=$	A $\text { (Wt.). } 6766$ $\text { Nt.). } 6766$
	Loss (W) ting Surface former Weig Power (W) are listed in s with suria m 3 in 2 to	Case (in d order less tha Do not	below for st to least Equations he mounting	Case A MIL-C pplicabl when	microwith g radiating
MIL-T-27 Case Radiating Areas (Excludes Mounting Surface)					
Case	Area $\left(\mathrm{in}^{2}\right)$	Case	Area (in^{2})	Case	Area $\left(\mathrm{in}^{2}\right)$
AF AG AH AJ EB EA FB FA	$\begin{array}{r} 4 \\ 7 \\ 11 \\ 18 \\ 21 \\ 23 \\ 25 \\ 31 \end{array}$	$\begin{aligned} & \text { GB } \\ & \text { GA } \\ & H B \\ & H A \\ & \text { JB } \\ & \text { JA } \\ & \text { KB } \\ & \text { KA } \end{aligned}$	33 43 42 53 58 71 72 84	$\begin{aligned} & \text { LB } \\ & \mathrm{LA} \\ & M B \\ & M A \\ & N B \\ & N A \\ & O A \end{aligned}$	82 98 98 115 117 139 146

The following failure-rate model applies to motors with power ratings below one horsepower. This model is applicable to polyphase, capacitor start and run and shaded pole motors. It's application may be extended to other types of fractional horsepower motors utilizing rolling element grease packed bearings. The model is dictated by two tailure modes, bearing failures and winding failures. Application of the model to D.C. brush motors assumes that brushes are inspected and replaced and are not a failure mode. Typical applications include fans and blowers as woll as various other motor applications. The model is based on Reference 4, which contains a more comprehensive treatment of motor life prediction methods. The reference should be reviewed when bearing loads exceed 10 percent of rated load, speeds exceed 24,000 rpm or motor loads include motor speed slip of greater than 25 percent.

The instantaneous fallure rates, or hazard rates, experienced by motors are not constant but increase with time. The failure rate model in this section is an average failure rate for the motor operating over time period " 7 ". The motor operating time period (t-hours) is selected by the analyst. Each motor must be replaced when it reaches the end of this period to make the calculated λ_{p} valid. The average failure rate, λ_{p}, has been obtained by dividing the cumulative hazard rate by i. and can be treated as a constant failure rate and added to other part fallure rates from this Handbook.

$$
\lambda_{p}=\left[\frac{t^{2}}{\alpha_{B}^{3}}+\frac{1}{\alpha_{W}}\right] \times 10^{6} \text { Failures/10 } 0^{6} \text { Hours }
$$

Bearing \& Winding Characteristic Lite $-\alpha_{B}$ and α_{W}

NOTE: See next page for method to calculate α_{B} and α_{W} when temperature is not constant.
$\alpha_{\text {Calculation }}$ for Cycled Temperature
The following equation can be used to cakulate a weighted characteristic life for both bearings and windings (e.g., for bearings substitute α_{B} for all α^{\prime} s in equation).

$$
\alpha=\frac{\left(h_{1}+h_{2}+h_{3}+\cdots \cdot \cdot h_{m}\right)}{\frac{h_{1}}{\alpha_{1}}+\frac{h_{2}}{\alpha_{2}}+\frac{h_{3}}{\alpha_{3}}+\cdots \cdots \cdot \frac{h_{m}}{\alpha_{m}}}
$$

where:
$\alpha=$ either α_{B} or α_{W}
$h_{1}=$ Time at Temperature T_{1}
$n_{2}=$ Time to Cycle From Temperature T_{1} to T_{3}
$h_{3}=$ Time at Temperature T_{3}
$h_{m}=$ Time at Temperature T_{m}
$\alpha_{1}=$ Bearing (or Winding) Life at T_{1}
$\alpha_{2}=$ Bearing (or Winding) Life at T_{2}
NOTE: $\quad T_{2}=\frac{T_{1}+T_{3}}{2}, \quad T_{4}=\frac{T_{3}+T_{1}}{2}$

Hours (h)
Thermal Cycle

DESCRIPTION

Rotating Synchros and Resolvers

$$
\lambda_{p}=\lambda_{b} \pi_{S} \pi_{N} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

NOTE: Synchros and resolvers are predominately used in service requiring only slow and infrequent motion. Mechanical wearout problems are infrequent so that the electrical failure mode dominates, and no mechanical mode failure rate is required in the model above.

Base Failure Rate - λ_{B}			
$T_{F}\left({ }^{\circ} \mathrm{C}\right)$	λ_{b}	$\mathrm{T}_{\mathrm{F}}\left({ }^{\circ} \mathrm{C}\right)$	λ_{b}
30	. 0083	85	. 032
35	. 0088	90	. 041
40	. 0095	95	. 052
45	. 010	100	. 069
50	. 011	105	. 094
55	. 013	110	. 13
60	. 014	115	. 19
65	016	120	. 29
70	. 019	125	45
75	. 022	130	74
80	. 027	135	1.3
$\lambda_{b}=.00535 \exp \left(\frac{T+273}{334}\right)^{8.5}$			
$\mathrm{T}_{\mathrm{F}}=$ Frame Temperature (${ }^{\circ} \mathrm{C}$)			
If Frame Temperature is Unknown Assume $T_{F}=40^{\circ} \mathrm{C}+$ Ambient Temperature			

Size Factor $-\pi_{S}$			
	π_{S}		
	Size 8 or Smaller	Size $10-16$	Size 18 or Larger
Synchro	2	1.5	1
Resolver	3	2.25	1.5

DESCRIPTION

Elapsed Time Meters

$$
\lambda_{p}=\lambda_{b} \pi_{T} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$	
Type	λ_{b}
A.C.	20
Inverter Driven	30
Commutator D.C.	80

Temperature Stress Factor $-\pi_{\mathrm{T}}$

Operating $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right) /$ Rated $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	
0 to .5	.5
.6	.6
.8	.8
1.0	1.0

Environment Factor $-\pi_{E}$

Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	12
N_{S}	7.0
N_{U}	18
$A_{I C}$	5.0
$A_{I F}$	8.0
$A_{U C}$	16
$A_{U F}$	25
$A_{R W}$	26
S_{F}	.50
M_{F}	14
M_{L}	38
C_{L}	N / A

MIL-HDBK-217F

12.4 ROTATING DEVICES, EXAMPLE

Example

Given: Fractional Horsepower Mctor operating at a thermal duty cycle of: 2 hours at $100^{\circ} \mathrm{C}, 8$ hours at $20^{\circ} \mathrm{C}, 0.5$ hours from $100^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$, and 0.5 hours from $20^{\circ} \mathrm{C}$ back to $100^{\circ} \mathrm{C}$. Find the average failure rate for 4000 hours operating time.

The basic procedure is to first determine operating temperature at each time interval (or averge temperature when traversing from one temperature to another, e.g. $T_{2}=(100+20) / 2=60^{\circ} \mathrm{C}$. Determine α_{B} and α_{W} at each temperature and then use these vakues to determine a weighted average α_{B} and α_{W} to use in the λ_{p} equation.

$$
\begin{aligned}
& h_{1}=2 \mathrm{hr} . \quad T_{1}=100^{\circ} \mathrm{C} ; \alpha_{B}=6100 \text { hours; } \quad \alpha_{W}=31000 \text { hours } \\
& h_{2}=h_{4}=0.5 \mathrm{hr} . \quad T_{2}=60^{\circ} \mathrm{C} ; \quad \alpha_{B}=35000 \text { hours; } \alpha_{W}=180000 \text { hours } \\
& h_{3}=8 \mathrm{hr} . \quad T_{3}=20^{\circ} \mathrm{C} ; \quad \alpha_{B}=39000 \text { hours; } \alpha_{W}=1600000 \text { hours } \\
& \alpha_{B}=\frac{2+0.5+8+0.5}{\frac{2}{6100}+\frac{0.5}{35000}+\frac{8}{39000}+\frac{0.5}{35000}}=19600 \text { nours } \\
& \alpha_{W}=\frac{2+0.5+8+0.5}{\frac{2}{31000}+\frac{0.5}{180000}+\frac{8}{1600000}+\frac{0.5}{180000}}=146000 \text { hours } \\
& \lambda_{p}=\left(\frac{t^{2}}{\alpha_{B}{ }^{3}}+\frac{1}{\alpha_{w}}\right) \times 10^{6} \\
& \lambda_{p}=\left(\frac{(4000)^{2}}{(19600)^{3}}+\frac{1}{146000}\right) \times 10^{6} \\
& \lambda_{p}=9.0 \text { Faihres } / 10^{6} \text { Hours }
\end{aligned}
$$

SPECIFICATION
MIL-R-5757
MIL-R-6106
MIL-R-19523
MIL-R-39016

DESCRIPTION
Mechanical Relay

MIL-R-19648
MIL-R-83725
MIL-R-83726 (Except Class C, Solid State Type)

$$
\lambda_{\mathrm{P}}=\lambda_{\mathrm{b}} \pi_{\mathrm{L}} \pi_{\mathrm{C}} \pi_{\mathrm{CYC}} \pi_{\mathrm{F}} \pi_{\mathrm{O}} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate - λ_{D}

$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	Rated Temperature	
	$85^{\circ} \mathrm{C}^{1}$	$125^{\circ} \mathrm{C}^{2}$
25	.0060	.0059
30	.0061	.0060
35	.0063	.0061
40	.0065	.0082
45	.0068	.0064
50	.0072	.0066
55	.0077	.0068
60	.0084	.0071
65	.0094	.0074
70	.011	.0079
75	.013	.0083
80	.020	.0089
85		.0097
90		.011
95		.012
100		.013
105		.015
110		.021
115		.025
120		.031

1. $\lambda_{B}=.00555 \exp \left(\frac{T_{A}+273}{352}\right)^{15.7}$
2. $\lambda_{b}=.0054 \exp \left(\frac{T_{A}+273}{377}\right)^{10.4}$
$T_{A}=$ Ambient Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Load Stress Factor $-\pi_{L}$

S	Load Type		
	Resistive ${ }^{1}$	Inductive ${ }^{2}$	Lamp ${ }^{3}$
. 05	1.00	1.02	1.06
. 10	1.02	1.06	1.28
. 20	1.06	1.28	2.72
. 30	1.15	1.78	9.49
. 40	1.28	2.72	54.6
. 50	1.48	4.77	
. 60	1.76	9.49	
. 70	2.15	21.4	
. 80	2.72		
. 90	3.55		
1.00	4.77		
	$\left(\frac{S}{.8}\right)^{2}$	3. $\pi_{L}=$	$\left(\frac{S}{2}\right)^{2}$
π_{L}	$\left(\frac{S}{4}\right)^{2}$	$\frac{\text { Operating }}{\text { Rated Resis }}$	Current

For single devices which switch two different load types, evaluate π_{L} for each possible stress load type combination and use the worse case (largest π_{L}).

Contact Form Factor - π_{C}
(Applies to Active Conducting Contacts)

Contact Form	π_{C}
SPST	1.00
DPST	1.50
SPDT	1.75
3PST	2.00
4PST	2.50
DPDT	3.00
3PDT	4.25
4PDT	5.50
6PDT	8.00

Cycle Rate (Cycles per Hour)	$\pi_{\text {CYC }}$ (Lower Quality)
>1000	$\left(\frac{\text { Cycles per Hour }}{100}\right)^{2}$
$10-1000$	$\frac{\text { Cycles per Hour }}{10}$
<10	1.0
NOTE:Values of $\pi_{\text {CYC }}$ for cycling rates beyond the basic design limitations of the relay are not valid. Design specitications should be consulted prior to evaluation of $\pi_{\text {CYC }}$	

Quality Fectior $-\mathrm{R}_{\mathrm{O}}$	
Oualiny	0
R	.10
P	.30
X	.35
M	.60
L	1.0
Non-Est. Rel.	1.5
	3.0

Application and Corstruction Factor - If				
Contact Reting	Application Type	Construction Type	${ }^{*} F$	
			$\begin{aligned} & \text { MML- } \\ & \text { SPEC } \end{aligned}$	$\begin{aligned} & \text { Lower } \\ & \text { Quality } \end{aligned}$
Signe Current (low mw and ma)	Dry Circui	Armature (Long) Dry Reed Mercury Wetted Magnetic Latching Balanced Armature Solenoid	$\begin{aligned} & 4 \\ & 6 \\ & 1 \\ & 4 \\ & 7 \\ & 7 \end{aligned}$	$\begin{array}{r} 8 \\ 18 \\ 3 \\ 8 \\ 14 \\ 14 \end{array}$
$0-6$ Anp	$\begin{aligned} & \text { Ceneral } \\ & \text { Purpose } \end{aligned}$	Frimiture (Long) Balanced Armature Solenoid	$\begin{aligned} & 3 \\ & 5 \\ & 6 \end{aligned}$	$\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$
	$\begin{aligned} & \text { Sensitive } \\ & (0-100 \mathrm{mw}) \end{aligned}$	Armative (Long and Short) Movoury Wimed Mmonevic Letching Meter Movement Batanced Armature	$\begin{array}{r} 5 \\ 2 \\ 6 \\ 100 \\ 10 \end{array}$	$\begin{array}{r} 10 \\ 6 \\ 12 \\ 100 \\ 20 \end{array}$
	Polarized	Armailure (Short) Meter Movement	$\begin{array}{r} 10 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} 20 \\ 100 \\ \hline \end{array}$
	Vibrating Reed	Dry Reed Mercury Wetted	$\begin{aligned} & 6 \\ & 1 \end{aligned}$	$\begin{array}{r} 12 \\ 3 \end{array}$
	High Speed	$\begin{aligned} & \text { Armature (Balanced } \\ & \text { and Short) } \\ & \text { Dry Reed } \end{aligned}$	25 6	$\begin{aligned} & M A \\ & M A \end{aligned}$
	$\begin{aligned} & \text { Therma } \\ & \text { Time Doley } \end{aligned}$	Bimetal	10	20
	Electronic True Delay. Nor Thermal		9	12
	Latching. Magnetic	Dry Reed Morcury Wetted Balanced Aramture	$\begin{array}{r} 10 \\ 5 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$
$\begin{aligned} & 5-20 \\ & \text { Anp } \end{aligned}$	$\begin{aligned} & \text { Han } \\ & \text { Voluere } \end{aligned}$	Vacuum (Glass) Vacum (Ceramic)	$\begin{array}{r} 20 \\ 5 \end{array}$	$\begin{aligned} & 40 \\ & 10 \end{aligned}$
	$\begin{aligned} & \text { Madium } \\ & \text { Power } \end{aligned}$	Armature (Long and Short) Mercury Wetted Magnetic Lathing Mechanical Latching Balanced Armature Solencid	$\begin{aligned} & 3 \\ & 1 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 6 \\ & 3 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$
25-600 ATp	$\begin{aligned} & \text { Contactors } \\ & \text { (high } \\ & \text { Current) } \end{aligned}$	Armature (Short) Mechanical Letching Balanced Armature Solenoid	$\begin{array}{r} 7 \\ 12 \\ 10 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 14 \\ & 24 \\ & 20 \\ & 10 \end{aligned}$

SPECIFICATION

MIL-R-28750
MIL-R-83726

DESCRIPTION

Relay, Solid State
Relay, Time Delay, Hybrid and Solid State

The most accurate method for predicting the failure rate of solid state (and solid state time delay) relays is to sum the failure rates for the individual components which make up the relay. The individual component failure rates can either be calculated from the models provided in the main body of this Handbook (Parts Stress Method) or from the Parts Count Method shown in Appendix A, depending upon the depth of knowledge the analyst has about the components being used. If insufficient information is available, the following default model can be used:

$$
\lambda_{p}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$	
Relay Type	λ_{b}
Solid State	.40
Solid State Time Delay	.50
Hybrid	.50

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	12
N_{S}	6.0
N_{U}	17
$A_{I C}$	12
$A_{I F}$	19
$A_{U C}$	21
$A_{U F}$	32
$A_{R W}$	23
S_{F}	.40
M_{F}	12
M_{L}	33
C_{L}	590

SPECIFICATION

MIL-S-3350
MIL-S-8805
MIL-S-8834

MIL-S-22885
MIL-S-83731

DESCRIPTION

Snap-action, Toggle or Pushbutton, Single Body

$$
\lambda_{\mathrm{p}}=\lambda_{\mathrm{b}} \pi_{\mathrm{CYC}} \pi_{\mathrm{L}} \pi_{C} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

Description	MIL-SPEC	Lower Quality
Snap-action	.00045	.034
Non-snap Action	.0027	.040

Cycling Factor $-\pi_{\mathrm{CYC}}$	
Switching Cycles per Hour	π_{CYC}
≤ 1 Cycle/Hour	1.0
>1 Cycle/Hour	Number of Cycles/Hour

Load Stress Factor - π_{L}			
$\begin{gathered} \hline \text { Stress } \\ S \\ \hline \end{gathered}$	Load Type		
	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		
$S=\frac{\text { Operating Load Current }}{\text { Rated Resistive Load Current }}$			
$\pi_{\mathrm{L}}=\exp (S / .8)^{2} \quad$ for Resistive Load			
$\pi_{\mathrm{L}}=\exp (\mathrm{S} / .4)^{2} \quad$ for Inductive Load			
$\pi_{L}=\exp (S / 2)^{2}$ for Lamp Load			

Contact Form and Quantity Factor $-\pi_{\mathrm{C}}$

Contact Form	π_{C}
SPST	1.0
DPST	1.5
SPDT	1.7
3PST	2.0
4PST	2.5
SPDT	3.0
3PDT	4.2
6PDT	5.5

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	18
N_{S}	8.0
N_{U}	29
$A_{I C}$	10
$A_{I F}$	18
$A_{U C}$	13
$A_{U F}$	22
$A_{R W}$	46
S_{F}	.50
M_{F}	25
M_{L}	67
C_{L}	1200

NOTE: When the switch is rated by inductive load, then use resistive π_{L}.

MIL-HDBK-217F

14.2 SWITCHES, BASIC SENSITIVE

SPECIFICATION

MIL-S-8805

DESCRIPTION Basic Sensitive

$$
\lambda_{p}=\lambda_{b} \pi_{C Y C} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

$\begin{array}{ll} \lambda_{\mathrm{b}}=\lambda_{\mathrm{bE}}+n \lambda_{\mathrm{bC}} & \begin{array}{l} \text { (if Actuation Differential is } \\ >0.002 \text { inches) } \end{array} \\ \lambda_{\mathrm{b}}=\lambda_{\mathrm{bE}}+n \lambda_{\mathrm{bO}} & \begin{array}{l} \text { (if Actuation Differential is } \\ \\ \leq 0.002 \text { inches) } \end{array} \end{array}$ $\mathrm{n}=$ Number of Active Contacts		
Description	MIL-SPEC	Lower Quality
$\lambda_{\text {b }}$. 10	. 10
$\lambda_{\text {b }}$	00045	. 23
$\lambda_{\text {b } 0}$. 0009	. 63

Load Stress Factor - π_{L}			
$\begin{gathered} \hline \text { Stress } \\ S \end{gathered}$	Load Type		
	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		
$S=\frac{\text { Operating Load Curren! }}{\text { Rated Resistive Load Current }}$			
	$\exp (\mathrm{S} / .8)^{2}$	for Re	e Load
	$\exp (S / .4)^{2}$	for Ind	e Load
	$\exp (S / .2)^{2}$	for Lam	

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	18
$\mathrm{~N}_{\mathrm{S}}$	8.0
$\mathrm{~N}_{\mathrm{U}}$	29
$\mathrm{~A}_{1 \mathrm{l}}$	10
$A_{I F}$	18
$A_{U C}$	13
$A_{U F}$	22
$A_{R W}$	46
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	25
M_{L}	67
C_{L}	1200

NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_{L}.

SPECIFICATION
MIL-S-3786

DESCRIPTION

Rotary, Ceramic or Glass Water, Silver Alloy Contacts

$$
\lambda_{p}=\lambda_{b} \pi_{C Y C} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base failure rate model ($\lambda_{\text {b }}$):		
$\lambda_{b}=\lambda_{B E}+n \lambda_{B G} \quad$ (for Rotary Switch Medium Power Wafers)		
$n=$ Number of Active Contacts		
Description	MIL-SPEC	Lower Quality
$\lambda_{b E}$. 0067	. 10
$\lambda_{b F}$. 00003	. 02
$\lambda_{b G}$. 00003	. 06

Load Stress Factor $-\pi_{\mathrm{L}}$			
Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		

$S=\frac{\text { Operating Load Current }}{\text { Rated Resistive Load Current }}$

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	18
N_{S}	8.0
N_{U}	29
$A_{I C}$	10
$A_{I F}$	18
$A_{U C}$	13
$A_{U F}$	22
$A_{R W}$	46
S_{F}	.50
M_{F}	67
M_{L}	1200
C_{L}	

$\pi_{\mathrm{L}}=\exp (\mathrm{S} / .8)^{2} \quad$ for Resistive Load
$\pi_{\mathrm{L}}=\exp (\mathrm{S} / .4)^{2} \quad$ for Inductive Load
$\pi_{L}=\exp (S / .2)^{2} \quad$ for Lamp Load
NOTE: When the Switch is Rated by Inductive Load, then use Resistive π_{L}.

SPECIFICATION

MIL-S-22710
Line

DESCRIPTION
Switches, Rotary (Printed Circuit) (Thumbwheel, Inand Pushbutton)

$$
\lambda_{p}=\left(\lambda_{b 1}+\pi_{N} \lambda_{b 2}\right) \pi_{C Y C} \pi_{L} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

CAUTION: This model applies to the switching function only. The model does not consider the contribution of any discrete components (e.g., resistors, diodes, lamp) which may be mounted on the switch. If signiticant (relative to the switch failure rate), the failure rate of these devices must be calculated using the appropriate section of this Handbook and added to the failure rate of the switch.

This model applies to a single switch section. This type of switch is frequently ganged to provide the required function. The model must be applied to each section individually.

Number of Active Contacts Factor $-\pi_{N}$
$\pi_{N}=$ Number of Active Contacts

Load Stress Factor $-\pi_{L}$			
Stress	Load Type		
S	Resistive	Inductive	Lamp
0.05	1.00	1.02	1.06
0.1	1.02	1.06	1.28
0.2	1.06	1.28	2.72
0.3	1.15	1.76	9.49
0.4	1.28	2.72	54.6
0.5	1.48	4.77	
0.6	1.76	9.49	
0.7	2.15	21.4	
0.8	2.72		
0.9	3.55		
1.0	4.77		

$S=\frac{\text { Operating Load Current }}{\text { Rated Resistive Load Current }}$
$\pi_{L}=\exp (S / .8)^{2} \quad$ for Resistive Load
$\pi_{L}=\exp (S / .4)^{2} \quad$ for Inductive Load
$\pi_{L}=\exp (S / .2)^{2} \quad$ for Lamp Load

NOTE: When the Switch is Rated by Inductive
Load, then use Resistive π_{L}.

Cycting Factor - π_{CYC}

Switching Cycles per Hour	π_{CYC}
≤ 1 Cycle/Hour	1.0
>1 Cycle/Hour	Number of Cycles/Hour

Environment Factor - π_{E}

Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	18
$\mathrm{~N}_{\mathrm{S}}$	8.0
$\mathrm{~N}_{\mathrm{U}}$	29
$\mathrm{~A}_{I C}$	10
$A_{I F}$	18
$A_{U C}$	13
$A_{U F}$	22
$A_{R W}$	46
$\mathrm{~S}_{\mathrm{F}}$	25
M_{F}	67
M_{L}	1200
C_{L}	

SPECIFICATION

MIL-C-55629
MIL-C-83383
MIL-C-39019
W-C-375

DESCRIPTION

Circuit Breakers, Magnetic, Unsealed, Trip-Free
Circuit Breakers, Remote Control, Thermal, Trip-Free
Circuit Breakers, Magnetic, Low Power, Sealed, Trip-Free Service
Circuit Breakers, Molded Case, Branch Circuit and Service

$$
\lambda_{p}=\lambda_{b} \pi_{C} \pi_{U} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

Description	λ_{b}
Magnetic	.020
Thermal	.038
Thermal-Magnetic	.038

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-SPEC	1.0
Lower	8.4

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	15
N_{S}	8.0
N_{U}	27
$A_{I C}$	7.0
$A_{I F}$	9.0
$A_{U C}$	11
$A_{U F}$	12
$A_{R W}$	46
S_{F}	.50
M_{F}	25
M_{L}	66
C_{L}	N / A

SPECIFICATION*	DESCRIPTION	SPECIFICATION*	DESCRIPTION
MIL-C-24308	Rack and Panel	MIL-C-3607	Coaxial, RF
MIL-C-28748		MIL-C-3643	
MIL-C-28804		MIL-C-3650	
MIL-C-83513		MIL-C-3655	
M11-C83733		MIL-C-25516	
MIL-C-5015	Circular	MIL-C-39012	
MIL-C-26482		MIL-C-55235	
ML-C28840		MIL-C-55339	
MIL-C-38999		MIL-C-3767	Power
MIL-C-81511		MIL-C-22992	
MIL-C83723			
*NOTE: See following	e for connector configurations.	MIL-C-49142	Triaxial, RF

APPLICATION NOTE: The failure rate model is for a mated pair of connectors. It is sometimes desirable to assign half of the overall mated pair connector (i.e., single connector) failure rate to the line replaceable unit and half to the chassis (or backplane). An example of when this would be beneficial is for input to maintainability prediction to allow a failure rate weighted repair time to be estimated for both the LRU and chassis. This accounting procedure could be significant if repair times for the two halves of the connector are substantially different. For a single connector divide λ_{p} by two.

$\mathrm{T}_{0}\left({ }^{\circ} \mathrm{C}\right)$	$\frac{\text { Base Failure Rate }-\lambda_{D}}{\text { Insert Material* }}$			
	A^{1}	B^{2}	c^{3}	D^{4}
0	. 00006	. 00025	. 0021	. 0038
10	. 00008	. 00033	. 0026	. 0048
20	. 00009	. 00044	. 0032	. 0062
30	. 00011	. 00057	. 0040	. 0078
40	. 00014	. 00073	. 0048	. 0099
50	. 00016	. 00093	. 0059	. 013
60	. 00020	. 0012	. 0071	. 016
70	. 00023	. 0015	. 0087	. 020
80	. 00027	. 0019	. 011	. 026
90	. 00032	. 0023	. 013	. 033
100	. 00037	. 0029	. 016	. 043
110	. 00043	. 0036	. 020	. 056
120	. 00050	. 0045	. 024	. 074
130	. 00059	. 0056		
140	. 00069	. 0070		
150	. 00080	. 0087		
160	. 00094	. 011		
170	. 0011	. 014		
180	. 0013	. 018		
190	. 0016	. 022		
200	. 0019	. 029		
210	. 0023			
220	. 0028			
230	. 0034			
240	. 0042			
250	. 0053			

Base Failure Rate $-\lambda_{b}$ (∞ nt'd)

1. $\lambda_{b}=.020 \exp \left(\left(\frac{-1592.0}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{473}\right)^{5.36}\right)$
2. $\lambda_{b}=.431 \exp \left(\left(\frac{-2073.6}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{423}\right)^{4.66}\right)$
3. $\lambda_{b}=.190 \exp \left(\left(\frac{-1298.0}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{373}\right)^{4.25}\right)$
4. $\lambda_{\mathrm{b}}=.770 \exp \left(\left(\frac{-1528.8}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{358}\right)^{4.72}\right)$
$T_{0}=$ Internal Contact Operating Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\begin{aligned} T_{0}= & \text { Connector Ambient Temperature + Insert } \\ & \text { Temperature Rise }\end{aligned}$
See following page for Insert Temperature Rise Determination.

[^0]

Insert Temperature Rise ($\Delta \mathrm{T}^{\circ} \mathrm{C}$) Determination

Amperes Per Contact	Comact Gauga			
	22	20	16	12
2	4	2	1	0
3	8	5	2	1
4	13	8	4	1
5	19	13	5	2
6	27	18	8	3
7	36	23	10	4
8	46	30	13	5
9	57	37	16	6
10	70	45	19	7
15		96	41	15
20			70	26
25			106	39
30				54
35				72
40				92
$\Delta T=0.9$			Gaug	tacts
$\Delta T=0.6$	(i) ${ }^{1}$		Gauge	tacts
$\Delta T=0.27$	(i) ${ }^{1}$		Gauge	tacts
$\Delta T=0.1$	(i) ${ }^{1 .}$		Gauge	tacts

$\Delta T=$ Insen Temperature Rise
$1=$ Amperes per Contact

RF Coaxial Connectors $\quad \Delta T=5^{\circ} \mathrm{C}$
RF Coaxial Connectors (High Power Applications) $\quad \Delta T=50^{\circ} \mathrm{C}$

Mating/Unmating Facior $-\pi_{\mathrm{K}}$	
Mating/Unmating Cycles* (per 1000 hours) π_{K} 0 to 05 1.0 $>.05$ to .5 1.5 $>.5$ to 5 2.0 >5 to 50 3.0 >50 4.0	

- One cycle includes both connect and disconnect.

SPECIFICATION

MIL-C-21097
MIL-C-55302

DESCRIPTION

One-Piece Connector
Two-Piece Connector

$$
\lambda_{p}=\lambda_{b} \pi_{K} \pi_{P} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

$\mathrm{T}_{0}\left({ }^{\circ} \mathrm{C}\right)$	λ_{b}	$\mathrm{T}_{0}\left({ }^{\circ} \mathrm{C}\right)$	λ_{b}
0	. 00012	110	. 0018
10	. 00017	120	. 0022
20	00022	130	. 0028
30	00028	140	. 0035
40	00037	150	. 0044
50	00047	160	. 0055
60	00059	170	. 0069
70	. 00075	180	. 0088
80	. 00093	190	. 011
90	. 0012	200	. 015
100	. 0015		
$\lambda_{b}=.216 \exp \left(\left(\frac{-2073.6}{T_{0}+273}\right)+\left(\frac{T_{0}+273}{423}\right)^{4.66}\right)$			
$\mathrm{T}_{0}=$ Internal Contact Operating Temperature (${ }^{\circ} \mathrm{C}$)			

Connector Temperature Rise ($\Delta \mathrm{T}^{\circ} \mathrm{C}$) Determination

Amperes	Contact Guage		
Per Contact	26	22	20
1	2	1	1
2	8	4	2
3	16	8	5
4	27	13	8
5	41	19	13
$\Delta T=2.100$ (i) 1.85	26 Guage Contacts		
$\Delta T=0.989$ (i) 1.85	22 Guage Contacts		
$\Delta T=0.640$ (i) 1.85	20 Guage Contacts		
$\Delta T=$ Contact Temperature Rise			
$i \quad=$ Amperes per Contact			

Mating/Unmating Factor $-\pi_{\mathrm{K}}$
Mating/Unmating Cycles* π_{K} (Per1000 Hours)
0 to .05
$>.05$ to .5
$>.5$ to
>5 to 50
>50

MIL-HDBK-217F

15.2 CONNECTORS, PRINTED CIRCUIT BOARD

Active Pins Factor - π_{p}			
Number of Active Contacts	π_{P}	Number of Active Contacts	π_{p}
1	1.0	65	13
2	1.4	70	15
3	1.6	75	16
4	1.7	80	18
5	1.9	85	19
6	2.0	90	21
7	2.2	95	23
8	2.3	100	25
9	2.4	105	27
10	2.6	110	30
11	2.7	115	32
12	2.9	120	35
13	3.0	125	37
14	3.1	130	40
15	3.3	135	43
16	3.4	140	46
17	3.6	145	50
18	3.7	150	53
19	3.9	155	57
20	4.0	160	61
25	4.8	165	65
30	5.6	170	69
35	6.5	175	74
40	7.4	180	78
45	8.4	185	83
50	9.5	190	89
55	11	195	94
60	12	200	100
$\pi_{P}=\exp \left(\frac{N-1}{10}\right)^{q}$			
$q=0.51064$			
$N=$ Number of Active Pins			
An active contact is the conductive element which mates with another element for the purpose of transferring electrical energy.			

Environment Factor $-\pi_{E}$		
π_{E} Environment MIL-SPEC Lower Quality G_{B} 1.0 2.0 G_{F} 3.0 7.0 G_{M} 8.0 17 N_{S} 5.0 10 N_{U} 13 26 $A_{I C}$ 6.0 14 $A_{I F}$ 11 22 $A_{U C}$ 6.0 14 $A_{U F}$ 11 22 $A_{R W}$ 19 37 S_{F} .50 .80 M_{F} 10 20 M_{L} 27 54 C_{L} 490 970		

15.3 CONNECTORS, INTEGRATED CIRCUIT SOCKETS

 -
SPECIFICATION

MIL-S-83734

DESCRIPTION
 IC Sockets, Plug-in

$$
\lambda_{p}=\lambda_{b} \pi_{P} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

MIL-HDBK-217F

16.1 INTERCONNECTION ASSEMBLIES WITH PLATED THROUGH HOLES

DESCRIPTION
Circuit Boards, Printed (PCBs) and Discrete Wiring
$\lambda_{p}=\lambda_{b}\left[N_{1} \pi_{C}+N_{2}\left(\pi_{C}+13\right)\right] \pi_{Q} \pi_{E}$ Failures $/ 10^{6}$ Hours

APPLICATION NOTE: For assemblies not using Plated Through Holes (PTH), use Section 17, Connections. A discrete wiring assembly with electroless deposit plated through holes is basically a pattern of insulated wires laid down on an adhesive coated substrate. The primary cause of failure for both printed wiring and discrete wiring assemblies is associated with plated through hole problems (e.g., barrel cracking).

Base Faikure Rate $-\lambda_{\mathrm{b}}$	
Technology	λ_{b}
Printed Wiring Assembly/Printed Circuit Boards with PTHs	.000041
Discrete Wiring with Electroless Deposited PTH $(\leq 2$ Levels of Circuitry)	.00026

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-SPEC or Comparable Institute for Interconnecting, and Packaging Electronic Circuits (IPC) Standards	1
Lower	2

Number of PTHs Factor $-N_{1}$ and N_{2}

Factor	Quantity
N_{1}	Quantity of Wave Soldered Functional N_{2}

Complexity Factor $-\pi_{C}$

Number of Circuit Planes, P	π_{C}
≤ 2	1.0
3	1.3
4	1.6
5	1.8
6	2.0
7	2.2
8	2.4
9	2.6
10	2.8
11	2.9
12	3.1
13	3.3
14	3.4
15	3.7
16	1
$\pi_{\mathrm{C}}=.65 \mathrm{P} .63$	$2 \leq \mathrm{P} \leq 16$

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	7.0
N_{S}	5.0
N_{U}	13
$A_{I C}$	5.0
$A_{I F}$	8.0
$A_{U C}$	16
$A_{U F}$	28
$A_{R W}$	19
S_{F}	.50
M_{F}	10
M_{L}	27
C_{L}	500

DESCRIPTION
 Connections Used on All Assemblies Except Those Using Plated Through Holes (PTH)

APPLICATION NOTE: The failure rate model in this section applies to connections used on all assemblies except those using plated through holes. Use the Interconnection Assembly Model in Section 16 to account for connections to a circuit board using plated through hole technology. The failure rate of the structure which supports the connections and parts, e.g., non-plated-through hole boards and terminal straps, is considered to be zero. Solderless wrap connections are characterized by solid wire wrapped under tension around a post, whereas hand soldering with wrapping does not depend on a tension induced connection. The following model is for a single connection.

$$
\lambda_{P}=\lambda_{B} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{D}}$	
Connection Type $\lambda_{\mathrm{D}}\left(F / 10^{6} \mathrm{hrs}\right)$ Hand Solder, w/o Wrapping .0026 Hand Solder, w/Wrapping .00014 Crimp .00026 Weld .00005 Solderless Wrap .0000035 Clip Termination .00012 Reflow Solder .000069	

Quality Factor - π_{Q}		
Quality Grade	π_{Q}	Comments
Crimp Types		
Automated	1.0	Daily pull tests recommended.
Manual		
Upper	1.0	Only MIL-SPEC or equivalent tools and terminals, pull test at beginning and end of each shift, color coded tools and terminations.
Standard	2.0	MIL-SPEC tools, pull test at beginning of each shift.
Lower	20.0	Anything less than standard criteria.
All Types Except Crimp	1.0	

MIL-HDBK-217F

SPECIFICATION MIL-M-10304

DESCRIPTION

Meter, Electrical Indicating, Panel Type, Ruggedized

$$
\lambda_{p}=\lambda_{b} \pi_{A} \pi_{F} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$

Type	λ_{b}
All	.090

Quality Factor $-\pi_{\mathrm{Q}}$	
Quality	π_{Q}
MIL-M-10304	1.0
Lower	3.4

Application Factor $-\pi_{\mathrm{A}}$	
Application	$\pi_{\mathbf{A}}$
Direct Current	1.0
Alternating Current	1.7

Function Factor $-\pi_{F}$	
Function	π_{F}
Ammeter	1.0
Voltmeter	1.0
Other*	2.8

- Meters whose basic meter movement construction is an ammeter with associated conversion elements.

Environment Factor $-\pi_{E}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	4.0
G_{M}	25
N_{S}	12
N_{U}	35
$A_{I C}$	28
$A_{I F}$	42
$A_{U C}$	58
$A_{U F}$	73
$A_{R W}$	60
S_{F}	1.1
M_{F}	60
M_{L}	N / A
C_{L}	N / A

MIL-HDBK-217F

```
SPECIFICATION
MIL-C-3098
```


DESCRIPTION

Crystal Units, Quartz

$$
\lambda_{p}=\lambda_{b} \pi_{Q} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

Base Failure Rate $-\lambda_{\mathrm{b}}$	
Frequency, $\mathrm{f}(\mathrm{MHz})$	λ_{b}
0.5	.011
1.0	.013
5.0	.019
10	.022
15	.024
20	.026
25	.027
30	.028
35	.029
40	.031
45	032
50	.033
55	.033
60	.034
65	.035
70	.036
75	.036
80	.037
85	.037
90	.038
95	
100	
105	

Environment Factor $-\pi_{\mathrm{E}}$	
Environment	π_{E}
G_{B}	1.0
G_{F}	3.0
G_{M}	10
$\mathrm{~N}_{\mathrm{S}}$	6.0
$\mathrm{~N}_{\mathrm{U}}$	16
$\mathrm{~A}_{\mathrm{I}}$	12
$\mathrm{~A}_{\mathrm{IF}}$	17
$\mathrm{~A}_{\mathrm{UC}}$	22
$\mathrm{~A}_{\mathrm{UF}}$	28
$\mathrm{~A}_{\mathrm{RW}}$	23
$\mathrm{~S}_{\mathrm{F}}$.50
M_{F}	13
M_{L}	32
C_{L}	500

Quality Factor $-\pi_{\mathrm{O}}$	
Ouality	π_{Q}
MIL-SPEC	1.0
Lower	2.1

MIL-HDBK-217F

SPECIFICATION

DESCRIPTION

MIL-L-6363
Lamps, Incandescent, Aviation Service
W-L-111

$$
\lambda_{p}=\lambda_{b} \pi_{U} \pi_{A} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

APPLICATION NOTE: The data used to develop this model included randomly occurring catastrophic failures and failures due to tungsten filament wearout.

Rated Voltage, V_{r} (Volts)	λ_{b}
$\begin{aligned} & 5 \\ & 6 \\ & 12 \\ & 14 \\ & 24 \\ & 28 \\ & 37.5 \end{aligned}$	$\begin{array}{r} .59 \\ .75 \\ 1.8 \\ 2.2 \\ 4.5 \\ 5.4 \\ 7.9 \end{array}$
$\lambda_{b}=.074\left(V_{r}\right)^{1.29}$	

Utiilization Factor $-\pi_{U}$	
Utilization (Illuminate Hours/' Equipment Operate Hours) <0.10 0.10 to 0.90 >0.90	0.10

Environment	$\pi_{\text {E }}$
G_{B}	1.0
G_{F}	2.0
G_{M}	3.0
N_{S}	3.0
N_{U}	4.0
$A_{1 C}$	4.0
$A_{\text {IF }}$	4.0
${ }^{\text {A }}$ UC	5.0
${ }^{\text {A }}$ UF	6.0
$A_{\text {RW }}$	5.0
S_{F}	. 70
M_{F}	4.0
M_{L}	6.0
C_{L}	27

Application Factor $-\pi_{\mathrm{A}}$

Application	π_{A}
Alternating Current	1.0
Direct Current	3.3

SPECIFICATION

MIL-F-15733
MIL-F-18327

DESCRIPTION

Fitters, Radio Frequency Interference
Fitters, High Pass, Low Pass, Band Pass, Band Suppression, and Dual Functioning (Non-tunable)

The most accurate way to estimate the failure rate for electronic filters is to sum the failure rates tor the individual components which make up the filter (e.g., IC's, diodes, resistors, etc.) using the appropriate models provided in this Handbook. The Parts Stress models or the Parts Count method given in Appendix A can be used to determine individual component failure rates. If insufficient information is available then the following defaut model can be used.

$$
\lambda_{P}=\lambda_{D} \pi_{Q} \pi_{E} \quad \text { Failures } / 10^{6} \text { Hours }
$$

Type	λ_{b}
MIL-F-15733, Ceramic-Ferrite Construction (Styles FL 10-16, 22, 24, 30-32, 34, 35, 38, 41-43, 45, 47-50, 61-65, 70, 81-93, 95, 96)	. 022
MIL-F-15733, Discrete LC Components, (Styles FL 37, 53, 74)	. 12
MIL-F-18327, Discrete LC Components (Composition 1)	. 12
MIL-F-18327, Discrete LC and Crystal Components (Composition 2)	. 27
Quality Factor - π_{Q}	
Quality	π_{0}
MIL-SPEC	1.0
Lower	2.9

Environment Factor $-\pi_{E}$
Environment π_{E} G_{B} 1.0 G_{F} 2.0 G_{M} 6.0 N_{S} 4.0 N_{U} 9.0 $A_{I C}$ 7.0 $A_{I F}$ 9.0 $A_{U C}$ 11 $A_{U F}$ 13 $A_{R W}$ 11 S_{F} .80 M_{F} 7.0 M_{L} 15 C_{L} 120

MIL-HDBK-217F
22.1 FUSES

SPECIFICATION

W-F-1726
W-F-1814
MIL-F-5372
ML-F-23419
MiL-F-15160

DESCRIPTION
Fuse, Cartridge Class H
Fuse, Cartridge, High Interrupting Capacity
Fuse, Current Limiter Type, Aircraft
Fuse, Instrument Type
Fuse, Instrument, Power and Telephone
(Nonindicating), Style F01

$$
\lambda_{p}=\lambda_{t} \pi_{E} \text { Failures } / 10^{6} \text { Hours }
$$

APPLICATION NOTE: The reliabiitity modeling of fuses presents a unique problem. Unlike most other components, there is very little correlation between the number of fuse replacements and actual fuse failures. Generally when a fuse opens, or "blows," something else in the circuit has created an overload condition and the fuse is simply functioning as designed. This model is based on life test data and represents fuse open and shorting failure modes due primarily to mechanical fatigue and corrosion. A short faihure mode is most commonty caused by electrically conductive material shorting the fuse terminals logether causing a failure to open condition when rated current is exceeded.

Environment	π_{E}
G_{B}	1.0
G_{F}	2.0
G_{M}	8.0
N_{S}	5.0
N_{U}	11
$A_{\text {ic }}$	9.0
$A_{\text {IF }}$	12
${ }^{\text {A }}$ UC	15
A UF	18
${ }^{\text {A }}$ RW	16
S_{F}	. 90
M_{F}	10
M_{L}	21
C_{L}	230

λ_{p} - Failure Rates for Miscellaneous Parts (Faikures/10 ${ }^{6}$ Hours)

Pant Type	Failure Rate
Vibrators (MIL=V=95) 60-cycle 120-cycle 400-cycle	15 20 40
Lamps Neon Lamps	0.20
Fiber Optic Cables (Single Fiber Types Only)	0.1 (Per Fiber Km)
Single Fiber Optic Connectors*	0.10
Microwave Elements (Coaxial \& Waveguide) Attenuators (Fixed \& Variable)	See Resistors, Type RD
Fixed Elements (Directional Couplers, Fixed Stubs \& Cavities)	Negligible
Variable Clements (Tuned Stubs \& Cavities)	0.10
Microwave Ferrite Devices Isolators \& Circulators (5100 W)	$0.10 \times \pi_{E}$
Isolators \& Circulators ($>100 \mathrm{~W}$)	$0.20 \times \pi_{E}$
Phase Shifter (Latching)	$0.10 \times \pi_{E}$
Dummy Loads < 100W	$0.010 \times \pi_{E}$
100 W to $\leq 1000 \mathrm{~W}$	$0.030 \times \pi_{E}$
> 1000 W	$0.10 \times \pi_{E}$
Terminations (Thin or Thick Fitm Loads Used in Stripline and Thin Film Circults)	$0.030 \times \pi{ }_{E}$

[^1]
MIL-HDBK-217F

23.1 MISCELLANEOUS

Environment Factor - π_{E} (Microwave Ferrite Devices)		Environment Factor $-\pi_{E}$ (Dummy Loads)	
Environment	π_{E}	Environment	π_{E}
G_{B}	1.0	G_{B}	1.0
G_{F}	2.0	G_{F}	2.0
G_{M}	8.0	G_{M}	10
N_{S}	5.0	${ }^{\mathrm{N}}$ S	5.0
N_{U}	12	N_{U}	17
$A_{\text {IC }}$	5.0	A_{1}	6.0
$A_{\text {IF }}$	8.0	$A_{\text {IF }}$	8.0
${ }^{\text {A }}$ UC	7.0	${ }^{\text {A }}$ UC	14
${ }^{\text {A }}$ UF	11	${ }^{\text {A }}$ UF	22
$A_{\text {RW }}$	17	$A_{\text {RW }}$	25
S_{F}	. 50	S_{F}	. 50
M_{F}	9.0	M_{F}	14
M_{L}	24	M_{L}	36
C_{L}	450	C_{L}	660

MIL-HDBK-217F

APPENDIX A: PARTS COUNT RELIABILITY PREDICTION

Parts Coumt Rellabillty Prediction - This prediction method is applicable during bid proposal and earty design phases when insufficient information is avaitable to use the part stress analysis models shown in the main body of this Handbook. The information needed to apply the method is (1) generic part types (including complexity for microcircuits) and quantities, (2) part quality levels, and (3) equipment environment. The equipment failure rate is obtained by looking up a generic failure rate in one of the following tables, multiphying it by a qually factor, and then summing it with failure rates obtained for other components in the equipment. The general mathematical expression for equipment taikre rate with this method is:

$$
\lambda_{\text {EQUIP }}=\sum_{i=1}^{i=n} N_{i}\left(\lambda_{0} \pi^{\alpha_{i}} \quad \quad \text { Equation } 1\right.
$$

for a given equipment ervironment where:
$\lambda_{\text {EQUIP }}=$ Total equipment faikure rate (Failures/10 ${ }^{6}$ Hours)
$\lambda_{g}=$ Generic failure rate for the $i^{\text {th }}$ generic part (Failures $/ 10^{6}$ Hours)
$\pi_{Q} \quad=$ Quality factor for the $i^{\text {th }}$ generic part
$N_{i} \quad=$ Quantity of $i^{\text {th }}$ generic part
n

Equation 1 applies if the entire equipment is being used in one environment. If the equipment comprises several units operating in different environments (such as avionics systems with units in airborne inhabited $\left(A_{1}\right)$ and uninhabited (A_{U}) environments), then Equation 1 should be applied to the portions of the equipment in each environment. These "environment-equipment" failure rates should be added to determine total equipment failure rate. Environmental symbols are defined in Section 3.

The quality factors to be used with each part type are shown with the applicable λ_{g} tables and are not necessarily the same values that are used in the Part Stress Analysis. Microcircuits have an additional multiplying factor, π_{L}, which accounts for the maturty of the manufacturing process. For devices in production two years or more, no modification is needed. For those in production less than two years, λ_{g} should be multiplied by the appropriate π_{L} factor (See page A-4).

It should be noted that no generic failure rates are shown for hybrid microcircuits. Each hybrid is a fairty unique device. Since none of these devices have been standardized, their complexity cannot be determined from their name or function. Identically or similarty named hybrids can have a wide range of complexity that thwarts categorization for purposes of this prediction method. Hf hybrids are anticipated for a design, their use and construction should be thoroughly investigated on an individual basis with application of the prediction model in Section 5.

The failure rates shown in this Appendix were calculated by assigning model default values to the failure rate models of Section 5 through 23. The spectic default values used for the model parameters are shown with the λ_{g} Tables for microcircuits. Defauk parameters for all other part classes are summarized in the tables starting on Page A-12. For parts with characteristics which differ significantly from the assumed defaults, or parts used in large quantities, the underlying models in the main body of this Handbook can be used.

MIL-HDBK-217F

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Section \& Broclac Iechollogy \& $$
\begin{aligned}
& \text { Emivion. } \rightarrow \\
& T_{J}\left(C_{0}\right) \rightarrow
\end{aligned}
$$ \& $$
\begin{aligned}
& G_{8} \\
& 50 \\
& \hline
\end{aligned}
$$ \& G_{F}
60 \& GM
65 \& N

0 \& N_{15}
05 \& A_{10}

75 \& | ${ }^{1} 7$ |
| :--- |
| 75 | \& 41%

90 \& $$
\begin{gathered}
A_{1 F} \\
00
\end{gathered}
$$ \& $\left.{ }^{A_{\text {RW }}} \begin{array}{c}75\end{array}\right]$ \& \[

$$
\begin{array}{r}
S_{F} \\
50 \\
\hline
\end{array}
$$

\] \& | 70 |
| :---: |
| 85 | \& M

75 \& C
60

\hline \multirow[t]{7}{*}{5.1} \& \multirow[t]{7}{*}{| Gatelopic Arrays, Digital (Ea - .4) |
| :--- |
| 1-100 Galin |
| 101-1000 Gales |
| 1001 it 3010 Gatios |
| 3001 to 10,000 Gates |
| 10,000 to 30,000 Gates |
| 30,000 to 00,000 Gapes |} \& \multirow[t]{7}{*}{} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .0036 \\
& .0060 \\
& .11 \\
& .033 \\
& .52 \\
& .075
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .012 \\
& .020 \\
& .035 \\
& .12 \\
& .17 \\
& .23 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .024 \\
& .008 \\
& .086 \\
& .22 \\
& .33 \\
& .44 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .024 \\
& .037 \\
& .085 \\
& .22 \\
& .33 \\
& .43 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .035 \\
& .055 \\
& .097 \\
& .33 \\
& .48 \\
& .83 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .025 \\
& .029 \\
& .070 \\
& .23 \\
& .34 \\
& .48 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .030 \\
& .048 \\
& .085 \\
& .28 \\
& .42
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .032 \\
& .051 \\
& .061 \\
& .30 \\
& .45
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .049 \\
& .017 \\
& .14 \\
& .48 \\
& .68 \\
& .90
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .017 \\
& .074 \\
& .13 \\
& .41 \\
& .85
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .0038 \\
& .0060 \\
& .011 \\
& .033 \\
& .075
\end{aligned}
$$
\]} \& \multirow[t]{7}{*}{.030

.046
.082
.28
.41

53} \& \multirow[t]{7}{*}{$$
\begin{aligned}
& .080 \\
& .11 \\
& .10 \\
& .85 \\
& 1.25 \\
& \hline
\end{aligned}
$$} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& 1.2 \\
& 1.0 \\
& 3.3 \\
& 12 \\
& 17 \\
& 71
\end{aligned}
$$
\]}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{5.1} \& Gateloglic Array , Linaer (Ea = . 85) \& \multirow[t]{5}{*}{} \& \multirow[t]{5}{*}{.0095
.017
.033

.050} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& .024 \\
& .041 \\
& .074 \\
& .12 \\
& \hline
\end{aligned}
$$} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .039 \\
& .085 \\
& .11 \\
& .18 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.034 \\
.054 \\
.092 \\
.15 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .048 \\
& .078 \\
& .13 \\
& .21 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .057 \\
& .10 \\
& .19 \\
& .29 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .062 \\
& .11 \\
& .19 \\
& .30 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .12 \\
& .22 \\
& .41 \\
& .63 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .13 \\
& .24 \\
& .44 \\
& .67 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .076 \\
& .13 \\
& .22 \\
& .35 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .0095 \\
& .017 \\
& .033 \\
& .050 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .044 \\
& .072 \\
& .12 \\
& .19
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .098 \\
& .15 \\
& .20 \\
& .41
\end{aligned}
$$
\]} \& \multirow[t]{5}{*}{1.1

1.4
2.0
3.4}

\hline \& | 1-100 Tremisiators |
| :--- |
| 101-300 Transistora | \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& | 301-1000 Transietiors |
| :--- |
| 1001-10,000 Trensistora | \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \multirow[t]{4}{*}{} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{3}{*}{5.1} \& \& (16 Pin DIP) \& . 0061 \& 016 \& 029 \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& (24 Pin DIP) \& . 011 \& . 028 \& . 048 \& . 04.4 \& . 04 \& . 032 \& . 037 \& . 044 \& . 081 \& . 054 \& . 0081 \& . 034 \& . 076 \& 1.2

\hline \& \& 140 Pin DIP \& . 022 \& . 052 \& . 087 \& \& \& . 054 \& . 063 \& . 077 \& . 10 \& . 039 \& 011 \& . 057 \& . 12 \& 1.9

\hline \multirow[t]{8}{*}{5.1} \& \multirow[t]{8}{*}{} \& \multirow[t]{8}{*}{| (16 Pin DIP) $(24$ Pin DIP (40 Pin DIP) |
| :--- |
| (120 Piri PGA) |
| (100 Pin PGA) |
| (224 Pin PGA) |} \& \multirow[t]{8}{*}{.0057

.010
.019
.049

.13} \& \multirow[t]{8}{*}{$$
\begin{aligned}
& .015 \\
& .028 \\
& .047 \\
& .14 \\
& .22 \\
& .31 \\
& \hline
\end{aligned}
$$} \& \multirow[t]{8}{*}{\[

$$
\begin{aligned}
& .027 \\
& .045 \\
& .850 \\
& .25 \\
& .39
\end{aligned}
$$

\]} \& \multirow[t]{8}{*}{\[

$$
\begin{aligned}
& .027 \\
& .043 \\
& .077 \\
& .24 \\
& .51
\end{aligned}
$$

\]} \& \multirow[t]{8}{*}{\[

$$
\begin{aligned}
& .039 \\
& .062 \\
& .11 \\
& .36 \\
& .54 \\
& .73 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{8}{*}{\[

$$
\begin{aligned}
& .029 \\
& .040 \\
& .088 \\
& .27 \\
& .42 \\
& .59 \\
& \hline
\end{aligned}
$$
\]} \& . 11 \& . 14 \& . 18 \& . 13 \& 022 \& . 10 \& 22 \& 3.3

\hline \& \& \& \& \& \& \& \& \& \multirow[t]{7}{*}{$$
\begin{aligned}
& .035 \\
& .057 \\
& .10 \\
& .32 \\
& .49 \\
& .69 \\
& \hline
\end{aligned}
$$} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .030 \\
& .006 \\
& .12 \\
& .36 \\
& .56 \\
& .82 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{gathered}
.058 \\
.092 \\
.17 \\
.51 \\
.79 \\
1.1 \\
\hline
\end{gathered}
$$

\]} \& \multirow[t]{7}{*}{\[

$$
\begin{aligned}
& .052 \\
& .033 \\
& .15 \\
& .48 \\
& .72
\end{aligned}
$$

\]} \& \multirow[t]{8}{*}{\[

$$
\begin{aligned}
& .0057 \\
& .010 \\
& .019 \\
& .048 \\
& .084 \\
& .13 \\
& \hline
\end{aligned}
$$
\]} \& \multirow[t]{8}{*}{.033

.053
.095
.30
.46

.83} \& \multirow[t]{8}{*}{$$
\begin{gathered}
.074 \\
.12 \\
.21 \\
.00 \\
1.0 \\
1.4 \\
\hline
\end{gathered}
$$} \& \multirow[t]{7}{*}{1.2

1.9
3.3
12
17
21}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{5.1} \& \multirow[t]{5}{*}{| Gaimiogic Arragi, Lhear (EA $=$. .B5 |
| :--- |
| 10100 Translitions 101 yo 300 Trandictors 301 to 1,000 Tranciation 1001 bo 10,000 Trandiesora |} \& \multirow[t]{5}{*}{} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .0095 \\
& .017 \\
& .033 \\
& .05 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.024 \\
.041 \\
.074 \\
.12 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .038 \\
& .065 \\
& .11 \\
& .18 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.034 \\
.054 \\
.092 \\
.15 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .043 \\
& .073 \\
& .13 \\
& .21 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .057 \\
& .10 \\
& .19 \\
& .29 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .062 \\
& .11 \\
& .30 \\
& .30 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.12 \\
.22 \\
.41 \\
.63 \\
\hline
\end{array}
$$

\]} \& \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .076 \\
& .13 \\
& .22 \\
& .35
\end{aligned}
$$
\]} \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \multirow[t]{4}{*}{$$
\begin{array}{r}
131 \\
.24 \\
.44 \\
.67 \\
\hline
\end{array}
$$} \& \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& .0095 \\
& .017 \\
& .033 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& .044 \\
& .072 \\
& .12 \\
& .10
\end{aligned}
$$
\]} \& \multirow[t]{5}{*}{.098

.15
.20
.4} \& \multirow[t]{5}{*}{1.1
1.4
2.0
3.4}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{5}{*}{5.1} \& \multirow[t]{5}{*}{| 1001 to 10,000 Trandicxars |
| :--- |
| Floaing (sate Progrerninestive Logic Arty, AIOS (Ee m36) Up to 16K Ciols 16K io 84K Colls 64K to 256 K Colla 256K of 1 MCCl |} \& \multirow[t]{6}{*}{} \& \multirow[t]{6}{*}{\[

$$
\begin{array}{r}
.0048 \\
.0058 \\
.0081 \\
.0095 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{6}{*}{\[

$$
\begin{aligned}
& .018 \\
& .021 \\
& .022 \\
& .033 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{6}{*}{\[

$$
\begin{aligned}
& .035 \\
& .042 \\
& .043 \\
& .044 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{6}{*}{\[

$$
\begin{aligned}
& .035 \\
& .042 \\
& .042 \\
& .063
\end{aligned}
$$
\]} \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \multirow[t]{5}{*}{$$
\begin{array}{r}
.052 \\
.062 \\
.083 \\
.094 \\
\hline
\end{array}
$$} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.035 \\
.042 \\
.043 \\
.085 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.044 \\
.052 \\
.054 \\
.080 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{5}{*}{| .044 |
| ---: |
| .053 |
| .055 |
| .083 |} \& \multirow[t]{5}{*}{.070

.084
.086

.13} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& .070 \\
& .013 \\
& .013 \\
& .13 \\
& \hline
\end{aligned}
$$} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.0048 \\
.0058 \\
.0061 \\
.0095 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.044 \\
.052 \\
.053 \\
.079 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
.10 \\
12 \\
.13 \\
.19 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{5}{*}{| 1.9 |
| :--- |
| 2.3 |
| 2.3 |
| 3.3 |}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{5.1} \& \multirow[t]{4}{*}{| Microprocesames, Bpoilur (Ell a . .1) |
| :--- |
| Yo to 8 Bits |
| Up of 16 Biss |
| Up to 32 Bins |} \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \multirow[t]{3}{*}{(40 Pin DIP) (64 Pin PGA) (128 Pin PGA)} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& .028 \\
& .052 \\
& .11 \\
& \hline
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& .061 \\
& .11 \\
& .23 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& .098 \\
& .18 \\
& .36
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
.091 \\
.16 \\
.33 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
13 \\
.23 \\
.47 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& .12 \\
& .21 \\
& .44 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
.13 \\
.24 \\
.49 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& .17 \\
& .32 \\
& .65 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
.22 \\
.38 \\
.81 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& .114 \\
& .31 \\
& .65 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& .028 \\
& .052 \\
& .11 \\
& \hline
\end{aligned}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
.11 \\
.20 \\
.42 \\
\hline
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
.24 \\
.41 \\
.86 \\
\hline
\end{array}
$$
\]} \& \multirow[t]{4}{*}{${ }^{3.3}{ }^{5.6}$}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{5.1} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{(40 Pin DIP) (64 Pin PGA) (128 Pin PGA)} \& \multirow[t]{4}{*}{$$
\begin{aligned}
& .048 \\
& .093 \\
& .10 \\
& \hline
\end{aligned}
$$} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
.089 \\
.17 \\
.34 \\
\hline
\end{array}
$$
\]} \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \multirow[t]{3}{*}{$$
\begin{array}{r}
.13 \\
.24 \\
.49 \\
\hline
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
.12 \\
22 \\
.45
\end{array}
$$
\]} \& \multirow[t]{3}{*}{.16

.29

.60} \& \multirow[t]{3}{*}{| .16 |
| :--- |
| .30 |
| .61 |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& .17 \\
& .32 \\
& .66
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& .24 \\
& .45 \\
& .90 \\
& \hline
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{.28

.52

1.1} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
.2 \% \\
.40 \\
.8 \% \\
\hline
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& .048 \\
& .093 \\
& .19
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{.15

.27

.54} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
.28 \\
.50 \\
\hline
\end{array}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
3.4 \\
5.8 \\
12 \\
\hline
\end{array}
$$
\]}

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

MIL-HDBK-217F
APPENDIX A: PARTS COUNT

APPENDIX A: PARTS COUNT

Qubiry Fectors - 0_{0}	
Description	${ }_{0}$
cimes Gangorme: 	. 25
ChmBCitesorte: 1. Procured in IUlli sccondencer with MiL-M-38510, Clasa 8 requiremerta. 2. Procured in full accordenos with Mil. +39536, (Clase Q). 	1.0
Chamelcarmoct ML trawng. DESC dranthg or ather covermmore approved documummaiton. (Doee not 	2.0

Generlc Fallure Rate - $\lambda_{\text {g }}$ (Fallurea/10 ${ }^{15}$ Hours) for Discrete Semiconductors

Soction	Pan Type	$\left[\begin{array}{l} \text { Env } \rightarrow Q_{B} \\ T_{j}(C) \rightarrow 50 \end{array}\right.$	$\begin{aligned} & \mathrm{a}_{\mathrm{F}} \\ & 60 \end{aligned}$	$\begin{aligned} & 9_{M} \\ & 65 \end{aligned}$	$\begin{aligned} & N_{S} \\ & 60 \end{aligned}$	$\begin{aligned} & N_{y} \\ & 65 \end{aligned}$	A_{K}	$\begin{aligned} & A_{\text {IF }} \\ & 75 \end{aligned}$	$A A_{X C}$ 90	$\begin{aligned} & \text { AuF }^{2} \\ & \infty \end{aligned}$	$\begin{gathered} A_{\text {RW }} \\ 75 \end{gathered}$	$\begin{aligned} & \delta_{\mathrm{F}} \\ & 50 \end{aligned}$	$\begin{aligned} & M_{F} \\ & 65 \end{aligned}$	$\begin{aligned} & M_{L} \\ & 75 \end{aligned}$	$\begin{aligned} & q_{L} \\ & 60 \end{aligned}$
	OPTO-ELECTITONICS														
6.11	Pholodetector	011	. 029	. 083	. 059	. 18	. 084	. 11	21	35	34	. 0057	. 15	. 51	3.7
6.11	Opro-isolutor	. 027	. 070	20	14	. 43	. 20	25	. 48	. 83	. 80	. 013	. 35	1.2	8.7
6.11	Emmer	. 00047	. 0012	. 0335	. 0025	. 0077	. 0035	. 0044	. 0086	. 015	. 014	. 00024	. 0063	. 021	15
6.12	Aphanumeric Dipplay	. 0062	. 016	. 045	. 032	. 10	. 046	. 058	. 11	. 18	. 18	. 0031	. 082	28	2.0
6.13	Laser Diosec cranev Cials	5.1	15	49	32	110	58	72	100	170	230	2.6	87	350	2000
6.13	Lever Diose. in Canas/n GrAsP	8.9	23	${ }_{85}$	55	190	100	130	180	300	400	4.5	150	600	3500
7	tuaes		Seation	cindude	Aocolver	CRIT, C	Sess Frok	mpprifers,	Kyratrons,	NT, M	mutrons)				
8	Lasers		Section	8											

Section	Peritype	Style	M14.-R.	$\begin{aligned} & \text { Env. } \rightarrow G_{B} \\ & T_{A}(C) \rightarrow 30 \end{aligned}$	$\begin{aligned} & G_{F} \\ & 40 \end{aligned}$	$\begin{aligned} & G_{M} \\ & 45 \end{aligned}$	${ }_{4}$	$\begin{aligned} & N_{U} \\ & 45 \end{aligned}$	$\begin{gathered} A_{1 C} \\ 55 \end{gathered}$	$\begin{aligned} & A_{i F} \\ & 55 \end{aligned}$	$\begin{aligned} & A_{u} u \\ & 70 \end{aligned}$	$\begin{aligned} & A_{4} \\ & 70 \end{aligned}$	${ }_{55}^{A_{\text {PW }}}$	$\begin{aligned} & S_{F} \\ & 30 \end{aligned}$	$\begin{gathered} M_{F}^{\prime} \\ 45 \end{gathered}$	$\begin{gathered} \hline M_{1} \\ 55 \end{gathered}$	C 40
0.1	Composition	Fक्र	38008	. 00050	. 0022	. 0071	. 0037	. 012	. 0052	. 0065	. 016	. 025	. 025	. 00025	. 0098	. 035	. 36
0.1	Composition	PC	11	. 00050	. 0022	. 0071	. 0037	. 012	. 0052	. 0065	. 016	. 025	. 025	. 00025	. 0098	. 035	. 36
9.2	Fulm, insulated	RLR	30017	. 0012	. 0027	. 011	. 0054	. 020	. 0063	. 013	. 018	. 033	. 030	. 00025	. 014	. 044	. 69
0.2	Film, Insulated	RL	22684	. 0012	. 0027	. 011	. 0054	. 020	. 0063	. 013	. 018	. 033	. 030	. 00025	. 014	. 044	. 69
8.2	Fim PN(RCOM)	ANA	55182	. 0014	. 0031	. 013	. 0061	. 023	. 0072	. 014	. 021	. 038	. 034	. 00028	. 018	. 050	. 78
9.2	Fin	FN	10509	. 0014	. 0031	. 013	. 0061	. 023	. 0072	. 014	. 021	. 038	. 034	. 00028	. 018	. 050	. 78
9.3	Film, Power	fo	11804	. 012	. 025	. 13	. 082	. 21	078	. 10	. 19	. 24	. 32	. 0060	. 18	. 47	8.2
9.4	Fum, Notwork	PR	83401	. 0023	. 0066	. 031	. 013	. 055	. 022	. 043	. 077	. 15	. 10	. 0011	. 055	. 15	1.7
9.5	Wirewound, Accurato	PER	38005	. 0085	. 018	. 10	. 045	. 16	. 15	. 17	. 30	. 38	26	. 0068	. 13	. 37	5.4
9.5	Wirowound, Accurate	P\%	93	. 0085	. 018	. 10	. 045	. 16	. 15	. 17	. 30	. 38	. 26	. 0088	. 13	. 37	5.4
9.6	Wircwound Power	ANR	39007	. 014	. 031	. 16	. 077	. 28	. 073	. 15	. 19	. 39	. 42	. 0042	. 21	. 62	0.4
9.6	Wrewound, Power	PW	26	. 013	. 028	. 15	. 070	. 24	. 066	. 13	. 18	. 35	. 38	. 0038	. 10	. 56	8.6
9.7	Wrowound, Power, Chassia Mounted	fer	38009	. 0080	. 018	. 096	. 045	. 15	. 044	. 088	. 12	. 24	. 25	. 0040	. 13	. 37	5.5
0.7	Wircwound, Pown. Chassis Mounted	PE	10546	. 0080	. 018	. 096	. 045	. 15	. 044	. 088	. 12	. 24	. 25	. 0040	. 13	. 37	5.5
9.8	Thermistor	RTH	23648	. 065	. 32	1.4	. 71	1.6	. 71	1.9	1.0	2.7	2.4	. 032	1.3	3.4	82
9.9	Wirowound, Varieble	FIR	38015	. 025	. 055	. 35	. 16	. 58	. 16	. 26	. 35	. 50	1.1	. 013	. 52	1.6	24
9.9	Wirewound, Variable	FT	27208	. 025	. 055	. 35	. 16	. 58	. 16	. 26	. 35	. 59	1.1	. 013	. 52	1.6	24
9.10	Wirowound, Veriable, Precision	PR	12934	. 33	. 73	7.0	2.9	12	3.5	5.3	7.1	9.8	23	. 16	11	33	510
9.11	Wirewound, Variable, Semiprecision	PA	19	. 15	. 35	3.1	1.2	5.4	1.8	2.8	-	-	9.0	. 075	-	-	-
9.11	Wirewound, Variable, Semprocizion	FK	38002	. 15	. 35	3.1	1.2	5.4	1.8	2.8	-	-	9.0	. 075	-	-	-
9.12	Wirewound. Variable, Power	fP	22	. 15	. 34	2.9	1.2	5.0	1.6	2.4	-	-	7.6	. 076	-	.	-
9.13	Norwirewound.	RUR	38035	. 033	. 10	50	. 21	. 87	. 19	. 27	. 52	. 79	1.5	. 017	. 79	2.2	35
9.13	Norwirewound Variable	RJ	22097	. 033	. 10	. 50	. 21	. 87	. 19	. 27	. 52	. 79	1.5	. 017	. 78	2.2	35
9.14	Composillon, Variable	RV	94	. 050	. 11	1.1	. 45	1.7	2.8	4.6	4.6	7.5	3.3	. 025	1.5	4.7	87
9.15	Normirewound Veriable Precision	RO	38023	. 043	. 15	75	. 35	1.3	. 39	. 78	1.8	2.8	25	. 021	1.2	3.7	49
9.15	Flom Varieble	RMC	23285	. 048	. 16	. 76	. 36	1.3	. 36	. 72	1.4	2.2	2.3	. 024	1.2	3.4	52

[^2]
Genorlc Fallure Rato, λ_{g} (Fallures $/ 10^{6}$ Hours) for Capectors

Section	Part Type or Dielectric	Syle	MILC-	$\begin{aligned} & \text { Env. } \rightarrow G_{B} \\ & T_{A}\left({ }^{\circ} \mathrm{C}\right) \rightarrow 30 \end{aligned}$	$\begin{aligned} & G_{F} \\ & 40 \end{aligned}$	G_{M}	$\begin{aligned} & N_{S} \\ & 40 \end{aligned}$	$\begin{aligned} & N_{U} \\ & 45 \end{aligned}$	$\begin{aligned} & A_{1} C \\ & 55 \end{aligned}$	$\begin{aligned} & A_{i F} \\ & 55 \end{aligned}$	$\begin{aligned} & \lambda_{u} \\ & 70 \end{aligned}$	${ }_{T 0}^{A_{F}}$	λ_{50}	$\begin{aligned} & S_{F} \\ & 30 \end{aligned}$	$\begin{aligned} & W_{F} /{ }_{4} \end{aligned}$	$\begin{aligned} & \hline W L \\ & 55 \end{aligned}$	c 40
10.1	Paper, ByPass	${ }^{\text {CP }}$	25	. 0036	. 0072	. 033	. 018	. 055	. 023	. 03	. 070	. 13	. 083	. 0018	. 044	. 12	2.1
10.1	Paper, By-Pass	CA	12889	. 0039	. 0087	. 042	. 022	. 070	. 035	. 047	. 19	. 35	. 13	. 002	. 056	. 10	25
10.2	Peperflastic. Feedthrough	CRP	11893	. 0047	. 0086	. 044	. 034	. 073	. 030	. 040	. 094	. 15	. 11	. 0024	. 058	. 18	27
10.3	Paperficastc Firm	CPV	14157	. 0021	. 0042	. 017	. 010	. 030	. 0088	. 013	. 026	. 048	. 044	. 0010	. 023	. 083	1.1
10.3	Paparfisatic Fllm	COR	19978	. 0021	. 0042	. 017	. 010	. 030	. 0088	. 013	. 026	. 048	. 044	. 0010	. 023	. 063	1.1
10.4	Motuliced Paper/Plestic	OHR	39022	. 0028	. 0058	. 023	. 014	. 041	. 012	. 018	. 037	. 066	. 060	. 0014	. 032	. 088	1.5
10.4	Metulized Plastiod Plastic	OH	18312	. 0029	. 0058	. 023	. 014	. 041	. 012	. 018	. 037	. 066	. 060	. 0014	. 032	. 088	1.5
10.5	Motalized PaperiPlestic	Cf	55514	. 0041	. 0083	. 042	. 021	. 067	. 026	. 048	. 086	. 14	. 10	. 0020	. 054	. 15	2.5
10.6	Motalized Plestic	CPH	83421	. 0023	. 0092	. 019	. 012	. 033	. 0096	. 014	. 034	. 053	. 048	. 0011	. 026	07	1.2
10.7	MICA (Dipped or Molded)	CWR	38001	. 0005	. 0015	. 0081	. 0044	. 014	. 0068	. 0095	. 054	. 069	. 031	. 00025	. 012	. 046	. 45
10.7	MICA (Dppoed)	OM	5	. 0005	. 0015	. 0081	. 0044	. 014	. 0068	. 0095	. 054	. 069	. 031	. 00025	. 012	. 046	. 45
10.8	MICA (Buthon)	C8	10850	. 018	. 037	. 19	. 094	. 31	. 10	. 14	. 47	. 80	. 48	. 0091	. 25	. 68	11
10.9	Gless	Cra	23289	. 00032	. 00096	. 0059	. 0029	. 0094	. 0044	. 0062	. 035	. 045	. 020	. 00016	. 0076	. 030	29
10.9	Glass	Cr	11272	. 00032	. 00096	. 0059	. 0029	. 0094	. 0044	. 0062	. 035	. 045	. 020	. 00016	. 0076	. 030	. 29
10.10	Ceraric (Gent Puppose)	${ }_{\sim}^{*}$	11015	. 0036	. 0074	. 034	. 019	. 056	. 015	. 015	. 032	. 048	. 077	. 0014	. 049	. 13	2.3
10.10	Ceranic (Gen. Purpose)	CNP	30014	. 0036	. 0074	. 034	. 019	056	. 015	. 015	. 032	. 048	. 077	. 0014	. 049	. 13	2.3
10.11	Ceranic (Tema Coma)	CCR	20	. 00078	. 0022	. 013	. 0056	023	. 0077	. 015	. 053	. 12	. 046	. 00039	. 017	. 065	. 68
10.11	Ceranic Crip	COR	55881	. 00078	. 0022	. 013	. 0056	. 023	. 0077	. 015	. 053	. 12	. 048	. 00039	. 017	. 065	. 68
10.12	Tantalum, Solld	Csi	39003	. 0018	. 0039	. 016	. 0097	. 028	. 0091	. 011	. 034	. 057	. 065	. 00072	. 022	. 086	1.0
10.13	Tantalum Non-Solid	CLR	30006	. 0061	. 013	. 069	. 039	. 11	. 031	. 061	. 13	. 29	. 18	. 0030	. 089	. 26	4.0
10.13	Tertalum, Non-Solid	a	3985	. 0061	. 013	. 069	. 030	. 11	. 031	. 061	. 13	. 29	. 18	. 0030	. 080	. 26	4.0
10.14	Alurinum Oxide	ar	39018	. 024	. 061	. 42	. 18	. 50	. 46	. 55	2.1	2.8	1.2	. 012	. 40	1.7	21
10.15	Alumirum Dry	$\boldsymbol{C E}$	62	. 029	. 081	. 58	. 24	. 83	. 73	. 88	4.3	5.4	20	. 015	. 68	2.8	28
10.16	Vartabo. Cerenic	CV	81	. 08	. 27	1.2	. 71	2.3	. 69	1.1	6.2	12	4.1	. 032	1.0	5.9	85
10.17	Variablo. Pliston	PC	14009	. 033	. 13	. 62	. 31	. 93	. 21	. 28	2.2	3.3	2.2	. 016	. 93	3.2	37
10.18	Variable, At Trimmer	CT	92	. 080	. 33	1.6	. 87	3.0	1.0	1.7	9.9	19	6.1	. 032	25	8.8	100
10.19	Varieblo, Vecuum	CG	23183	0.4	1.3	6.7	3.6	13	5.7	10	56	80	$2{ }^{\text {d }}$. 20	-	-	. \cdot

MIL-HDBK-217F

[^3]Gonoric Fallure Rato, λ_{g} (Fallures/10 ${ }^{6}$ Hours) for Miscollanoous Parts

Section	Paritype Dialoctric	MII.	$\begin{aligned} & E n v \rightarrow G_{B} \\ & T_{A}\left({ }^{(C)}()+30\right. \end{aligned}$	$\begin{aligned} & \sigma_{F} \\ & 40 \end{aligned}$	$\begin{aligned} & G_{M} \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{N}_{\mathrm{s}} \\ & 40 \end{aligned}$	$\begin{aligned} & \hline M_{i} \\ & 45 \end{aligned}$	$\begin{aligned} & A_{1 K} \\ & 55 \end{aligned}$	$\begin{aligned} & \hline A_{\text {IF }} \\ & 55 \end{aligned}$	$\begin{aligned} & A_{40} \\ & 70 \end{aligned}$	$\begin{gathered} \overline{A_{i F}} \\ { }_{70} \end{gathered}$	$\begin{gathered} A_{5 w 1} \\ { }_{5 N} \end{gathered}$	$\begin{aligned} & s_{F} \\ & 30 \end{aligned}$	$\begin{aligned} & M_{F} \\ & 45 \end{aligned}$	M 5 5	9 40
$\begin{aligned} & 17.1 \\ & 17.1 \\ & 17.1 \\ & 17.1 \\ & 17.1 \\ & 17.1 \\ & 17.1 \end{aligned}$	SNGLE CONNECTIONS Hand Solder, wo Wrepping Hand Solder, wWrapping Crimp Wed Soldertess Wrap Cip Termination Relow Solder \qquad		$\begin{array}{r} .0026 \\ .00014 \\ .000026 \\ .000050 \\ .0000035 \\ .00012 \\ .000069 \\ \hline \end{array}$	$\begin{gathered} .0052 \\ .00028 \\ .00052 \\ .000100 \\ .000007 \\ .00024 \\ .000138 \\ \hline \end{gathered}$	$\begin{gathered} .018 \\ .00098 \\ .0018 \\ .000350 \\ .000025 \\ .00084 \\ .000483 \end{gathered}$	$\begin{gathered} .010 \\ .00056 \\ .0010 \\ .000200 \\ .000014 \\ .00048 \\ .000276 \\ \hline \end{gathered}$	$\begin{gathered} .029 \\ .0015 \\ .0029 \\ .000550 \\ .000089 \\ .0013 \\ .000759 \end{gathered}$.016 . 00004 .0016 000300 .000021 .00072 000414	\qquad	$\begin{gathered} .021 \\ .0011 \\ .0021 \\ .000400 \\ .00028 \\ .00096 \\ .000552 \\ \hline \end{gathered}$		\qquad		.062! .0034 .0062 . 101200 . 000084 .028 .001856	1.1 .059 .11 .021000 .0015 .050 .02898
$\begin{array}{r} 18.1 \\ 18.1 \\ \hline \end{array}$	DC Ammater or Votimeter AC Ammeter or Vollemeler	$\begin{aligned} & \begin{array}{l} 1+10304 \\ 4 \\ 4 \end{array} \mathbf{1 0 3 0 4} \end{aligned}$	$\begin{aligned} & 0.09 \\ & 0.15 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.36 \\ 0.81 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ 3.8 \\ \hline \end{array}$	$\begin{array}{r} 1.1 \\ 1.8 \\ \hline \end{array}$	$\begin{array}{r} 3.2 \\ 5.4 \\ \hline \end{array}$						$\begin{aligned} & 0.098 \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & N / \\ & N A \end{aligned}$	N/A
9.1	Querte Crasale	C.300e	. 032	096	32	19	51	38	. 54	70	80	74	018	42	1.0	16
$\begin{array}{r} 20.1 \\ 20.1 \\ \hline \end{array}$	Lampe, mcandocee:ent, AC Lempe, haydorcent, DC			$\begin{array}{r} 7.8 \\ 26 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ 38 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ 38 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ -51 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 51 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 51 \\ \hline \end{array}$	$\begin{array}{r} 19 \\ 64 \\ \hline \end{array}$	$\begin{aligned} & 23 \\ & n \\ & \hline \end{aligned}$	$\begin{array}{r} 19 \\ 64 \\ \hline \end{array}$		$\begin{array}{r} 16 \\ .51 \\ \hline \end{array}$		100 350
$\begin{aligned} & 21.1 \\ & 21.1 \\ & 21.1 \\ & \hline \end{aligned}$	ELECTRONC: FLITERS Ceramic-Ferrite Discrete LC Comp. Discrete LC \& Cyistal Comp.	$\begin{aligned} & \text { F-15733 } \\ & \text { F-15733 } \\ & \text { F-18327 } \\ & \hline \end{aligned}$	$\begin{array}{r}.022 \\ .12 \\ .27 \\ \hline\end{array}$	$\begin{array}{r} .044 \\ .24 \\ .54 \\ \hline \end{array}$	$\begin{array}{r} .13 \\ .72 \\ 1.6 \\ \hline \end{array}$	$\begin{array}{r} .088 \\ .48 \\ 1.1 \\ \hline \end{array}$	$\begin{array}{r} .20 \\ 1.1 \\ 2.4 \\ \hline \end{array}$	$\begin{array}{r} .15 \\ .84 \\ .1 .9 \\ \hline \end{array}$.20 1.1 2.4	.24 1.3 3.0	$\begin{array}{r}28 \\ 1.6 \\ \hline .5 \\ \hline\end{array}$.24 1.3 3.0	$\begin{array}{r}.018 \\ .096 \\ .22 \\ \hline\end{array}$	$\begin{array}{r} .15 \\ .84 \\ .1 .9 \\ \hline \end{array}$.33 1.8 4.1	$\begin{aligned} & 2.6 \\ & 14 \\ & 32 \end{aligned}$
2.1	fuses		010	. 020	. 080	. 050	11	. 090	12	15	18	16	. 009	. 10	21	2.3

MIL-HDBK-217F

* Category applies only to MIL-C-39010 Coils.

MIL-HDBK-217F
APPENDIX A: PARTS COUNT

$\overline{\mathrm{A}-12}$

MIL-HDBK-217F

Defaull Parameters for Discrute Semiconductors

MIL-HDBK-217F

Section \qquad	Part Type	Style	MIL-R-SPEC	${ }^{*}$ R	π	${ }^{\text {KTAPS }}$	Comments
9.1 9.1	Composition	ACR	$\begin{array}{r} 39008 \\ 11 \end{array}$	$\begin{aligned} & \hline 1.1 \\ & 1.1 \end{aligned}$			PW. Stress - .5. 1 M काm Pw. Stress =.5, 1 Mohm
9.2	Film, Insulated	RLA	39017	1.1			$\mathrm{P}_{\text {Wr }}$. Stress $=.5,1 \mathrm{Mchm}$
9.2	Film, Insulated	RL	22684	1.1			Pwr. Stress $=.5 .1 \mathrm{M} \mathrm{ohm}$
9.2	Fim, RN (P, Cor)	PNR	55182	1.1			PWr. Stress $=.5,1 \mathrm{Mchm}$
9.2	Fim	PN	10509	1.1			Pwr. Stress = . 5, 1 M ohm
$\begin{aligned} & 9.3 \\ & 9.4 \end{aligned}$	Film, Power Fxed, Natwork	PD	$\begin{aligned} & 11804 \\ & 83401 \end{aligned}$	1.0			PWr. Stress = .5, 100 ohm Pwr. Stress $=5 . T_{C}=T_{A}+28^{\circ} \mathrm{C}$, 10 Film Resistors
9.5	Wirewound. Accurate	RBR	39005	1.7			PWr. Strese $=.5,100 \mathrm{~K}$ chms
9.5	Wrewound, Accurate	RB	93	1.7			Pwr. Strese = 5, 100 K chms
9.6	Wrewound, Power	RWR	39007	1.1			Pwr. Stress $=.5,5 \mathrm{~K}$ ohms, RWR 84
9.6	Wrewound, Power	FW	28	1.0			Pwr. Stress = .5, 5K ohms, RW10
9.7	Wrowound, Power, Chassis Mounted	RER	39009	1.1			Pwr. Stress = 5. Noninductively Wound, 5K ohm, RER 55
9.7	Wrewound, Power, Chassis Mountad	PE	18546	1.1			Pwr. Stress = 5, MLL-R-18546, Char. N, 5K ohm, RE75
9.8	Thermistor	FTH	23648				Disk Type
9.9 9.9	Wrewound, Variable Wirewound, Variable	RTR	39015	1.4	1.1	1.0	Pwr. Stress $=5.5 \mathrm{~K}$ ohms, 3 Teps, Voltage Stiess $=.5$
9.10	Wrewound, Variable, Preciston	RT	27208 12934	1.4 1.4	1.1 1.1	1.0 1.0	$P_{\text {wr. }}$ Streses $=.5,3$ Tape, Voltage Strese $=.5$ PWr. Stest = .5, Construction Claes $8\left(\pi_{c}=1.5\right)$,
9.11	Wirewound, Variable, Semipredision	PA	19	1.4	1.0	1.0	50K ohm, 3 Taps, Voltage Stress $=.5$ P_{w}. Stress = $=5,5 \mathrm{~K}$ ohms, 3 Teps, Voltage Stress $=.5$
9.11 9.12	Wrewound. Semiprecision Wrowound, Variable, Power	PK RP	39002 22	1.4	1.0	1.0	Pwr. Stress = .5, 3 Tape, Voltage Stress $=.5$
	Norwirewound Varieble	R1R	22 30035	1.4	1.0	1.0	Pwr. Stress = $.5,3$ Tape, Voltage Stress $=.5$, Unenclosed ($x_{c}=1$)
9.13 9.13	Norwirewound, Varieble Norwirewound, Varisble	RNR	39035 22097	1.2 1.2	1.0 1.0	1.0	Pwr. Strese = .5, 200K ohm. 3 Tapre, Voltage Stress = . 5
9.14	Composilion, Variable	FV	94	1.2	1.0	1.0	Pwr. Stuese = . 5 , 200K Chm , 3 Tapa, Voltape Stress = . 5
9.15	Nonwirewound, Variable Precision	RO	39023	1.2	1.0	1.0	Pwr. Stress $=.5,200 \mathrm{~K}$ ohm, 3 Taps , Voltage Stress $=.5$
9.15	Flim, Vartable	FNC	23285	1.2	1.0	1.0	Pwr. Stress = .5, 200K ohm, 3 Taps, Vatage Stress = . 5

Section *	Part Typ	MIL-SPEC	${ }^{\pi_{C}}$	"CYC	π_{F}	Comments
	INDUCTIVE					
11.1	Low Pwr. Puised, XFMR	MIL.T. 21038				Max. Rated Temp. $=130^{\circ} \mathrm{C}, \Delta T=10$
11.1	Audio XFMR	MIL-T-27				Max. Rated Temp. $=130^{\circ} \mathrm{C}, \Delta T=10$
11.1	High Pwr. Pulse and Pwr XFMR, Fiter	MIL-T-27				Max. Rated Temp. $=130^{\circ} \mathrm{C}, \Delta \mathrm{T}=30$
11.1	RF Transformers	MIL.T-55631				Max. Rated Terme. $=130^{\circ} \mathrm{C}, \Delta \mathrm{t}^{T}=10$
11.2	RF Colls, Fixed or Malded	MIL.C. 15305	1			Max. Rated Temp. $=125^{\circ} \mathrm{C}, \Delta \mathrm{t}^{T}=10$
11.2	RF Colls, Varlable	MIL-C-15305	2			Max. Rated Termp., $=125^{\circ} \mathrm{C}, \Delta \mathrm{T}=10$
	ROTATING DEVICES					
12.1	Motors					$t=15,000$ hours (Assumed Puplacement Time)
12.2	Synchros					$T_{F}=T_{A}+40$, Size 10-16, 3 Brushes
12.2	Resolvers					$T_{F}=T_{A}+40$, Size 10-16, 3 Brushes
12.3	Elapsed Time Meters (ETM) ETM-AC					Op. Temp/Rated Temp. $=.5\left(x_{T}=.5\right)$
12.3	ETM-Inviarter Driver					Op. Temp/Ratiod Temp. $=.5\left(x_{\top}=.5\right)$
12.3	ETM-Cornruiteter DC:					Op. Temp/Rated Tomp. $=.5\left(x_{T}=.5\right)$
	RELAYS					
13.1	General Purpose		3	1	5	Max. Rated Temp. $=125^{\circ} \mathrm{C}$, DPDT, MIL-SPEC, 10 Cycles/Hour, 4 Amp., General Purpose, Balanced Armature, Resiattive Load, $s=.5$
13.1	Contactor, High Current		3	1	5	Max. Rated Tiemp. $=125^{\circ} \mathrm{C}$, DPDT, MIL-SPEC, 10 C -cles/Hour, 600 Amp., Solenoid, Inductive Load, $8=.5$
13.1	Latching		3	1	5	Max. Rated Temp. $=125^{\circ} \mathrm{C}$, MILL-SPEC, 4 Amp., Mercury Wetted, 10 Cyles/Hour, DPDT, Resisttve Load, $s=.5$
13.1	Reed		1	2	6	Max. Rated Timp. $=85^{\circ} \mathrm{C}$, Mil.SPEC, SIgnal Current, Dy Reed, 20 Cycles/Hour, SPST, Reelstive Load, $1=.5$
13.1	Thermal Bi-Metal		1	1	10	Max. Rated Tomp. $=125^{\circ} \mathrm{C}$, MLL-SPEC, EN-Metal, 10 Cycles/Hour, SPST, Inductive Load, 5 Amp., s = . 5
13.1	Meter Moivement		1	1	100	Max. Rated Tomp. $=125^{\circ} \mathrm{C}$, MLL-SPEC, Polarized Meter Movement, 10 Cydes/Hour, SPST, Reslative Load, 1 - .5
13.2	Solid State	MIL.-R-28750				No Defaults
19 ?	Time Delay Hybrid and Solid State	MIL.-R-3372.6				No Dofaults

MIL-HDBK-217F

APPENDIX A: PARTS COUNT

MIL-HDBK-217F

APPENDIX B: VHSICNHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

This appendix contains the detailed version of the VHSICNLSI CMOS model contained in Section 5.3. It is provided to allow more detailed device level design trade-offs to be accomplished for predominate failure modes and mechanisms exhibited in CMOS devices. Reference 30 should be consulted for a detailed derivation of this model.

VHSICNHSIC-LIKE EAILURE RATE MODEL
$\lambda_{P}(t)=\lambda_{O X}(t)+\lambda_{\text {MET }}(t)+\lambda_{\text {HC }}(t)+\lambda_{C O N}(t)+\lambda_{\text {PAC }}+\lambda_{\text {ESD }}+\lambda_{\text {MIS }}(t)$
$\lambda_{P}(t)=$ Predicted Failure Rate as a Function of Time
$\lambda_{O X}(t)=$ Oxide Failure Rate
$\lambda_{\text {MET }}(t)=$ Metallization Fallure Rate
$\lambda_{\text {HC }}(t)=$ Hot Carrier Failure Rate
$\lambda_{C O N}(t)=$ Contamination Failure Rate
$\lambda_{\text {PAC }}=$ Package Failure Rate
$\lambda_{\text {ESD }}=$ EOS/ESD Failure Rate
$\lambda_{\text {MIS }}(t)=$ Miscellaneous Failure Rate

The equations for each of the above failure mechanism failure rates are as follows:

OXIDE FAILURE RATE EQUATION

$$
\begin{aligned}
\lambda_{o x}\left(\text { in } F / 10^{6}\right)= & \frac{A A_{\text {TYPEOX }}}{A_{R}}\left(\frac{D_{0_{0 x}}}{D_{R}}\right)\left[\left(.0788 e^{-7.7 t_{0}}\right)\left(A_{T_{0 X}}\right)\left(e^{-7.7 A_{O X} t}\right)\right. \\
& \left.+\frac{.399}{(t+t 0) \sigma_{0 x}} \exp \left(\frac{-.5}{\sigma_{0 x}^{2}}\left(\ln \left(t+t_{0}\right)-\ln t_{50}\right)^{2}\right)\right]
\end{aligned}
$$

A $=$ Total Chip Area (in cm^{2})

$A_{\text {TYPE }}^{0 \times}$ = $\quad .77$ for Custom and Logic Devices, 1.23 for Memories and Gate Arrays

MIL-HDBK-217F

OXIDE FAILURE RATE EQUATON(CONTINUED)		
${ }^{A_{R}}$	=	. $21 \mathrm{~cm}^{2}$
$\mathrm{D}_{0 \text { ox }}$		Oxide Defect Density (H unknown, use $\left(\frac{x_{0}}{X_{s}}\right)^{2}$ where $X_{0}=2 \mu \mathrm{~m}$ and X_{s} is the feature size of the device)
D_{R}	=	1 Defect/cm ${ }^{2}$
t_{0}	=	Effective Screening Time
	$=$	
${ }^{\text {A }}$ Tox	-	$\text { Temperature Acceleration Factor, }=\exp \left[\frac{.3}{8.617 \times 10^{-5}}\left(\frac{1}{T_{J}} \cdot \frac{1}{298}\right)\right]$
		(where $T_{J}=T_{C}+\theta_{J C}{ }^{(}$(in $\left.{ }^{\circ} \mathrm{K}\right)$)
${ }^{\text {A }} \mathrm{V}_{\text {OX }}$		$e^{-192\left(\frac{1}{E_{0 x}} \cdot \frac{1}{2.5}\right)}$
$E_{0 x}$	$=$	Maximum Power Supply Voltage V_{DD}. divided by the gate oxide thickness (in MV/cm)
${ }^{\text {t }} 50 \mathrm{ox}$	$=$	$\frac{1.3 \times 10^{22}(\mathrm{QML})}{\mathrm{A}_{\mathrm{ox}}{ }^{A} V_{\mathrm{OX}}} \quad \text { (in } 10^{6} \text { hrs.) }$
		(QML) $=2$ if on OML, $.5 \mathrm{ff} \mathrm{not}$.
$\sigma_{0 x}$	=	Sigma obtained from test data of oxide failures from the same or similar process. If not available, use a $\sigma_{0 x}$ value of 1 .
t	$=$	time (in 10^{6} Hours)

MEIAL FALL URE BATE EQUATION

$$
\begin{aligned}
& \lambda_{\text {MET }}=\left[\frac{A_{T_{T Y E}}}{A_{R E T}} \frac{D_{0_{M E T}}}{D_{R}}\left(.00102 e^{-1.18 t_{0}}\right)\left(A_{T_{M E T}}\right)\left(e^{-1.18 A_{T_{M E T}} t}\right)\right] \\
&+\left[\frac{.399}{\left(t+t_{0}\right) \sigma_{M E T}} \exp \left(\frac{-.5}{\sigma_{\text {MET }} 2}\left(\ln \left(t+t_{0}\right)-\ln t_{50_{M E T}}\right)^{2}\right)\right]
\end{aligned}
$$

A $\quad=$ Total Chip Area (in cm^{2})
$A_{\text {TPPE }_{\text {MET }}}=.88$ for Custom and Logic Devices, 1.12 for Memory and Gate Arrays
$A_{R}=.21 \mathrm{~cm}^{2}$
$D_{0_{\text {MET }}}=$ Metal Defect Density (If unknown use $\left(\frac{x_{0}}{X_{S}}\right)^{2}$ where $X_{0}=2 \mu \mathrm{~m}$ and X_{S} is the feature size of the device)
$D_{R}=1$ Defect $/ \mathrm{cm}^{2}$
$A_{\text {TMET }}=$ Temperature Acceleration Factor
$=\exp \left[\frac{-.55}{8.617 \times 10^{-5}}\left(\frac{1}{T_{J}}-\frac{1}{298}\right)\right]\left(T_{J}=T_{C A S E}+\theta_{J C}{ }^{P} \quad\right.$ (in $\left.\left.{ }^{\circ} \mathrm{K}\right)\right)$
${ }^{t_{0}}=$ Effective Screening Time (in 10^{6} hrs.)
$=A_{T_{\text {MET }}}$ (at Screening Temp. (in $\left.{ }^{\circ} \mathrm{K}\right)$) * (Actual Screening Time (in 10^{6} hrs))
$\mathrm{t}_{50_{\text {MET }}}=(\mathrm{QML}) \frac{.388^{*} \text { (Metal Type) }}{J^{2} A_{\text {TMET }}} \quad$ (in $10^{6} \mathrm{hrs}$.)
$(\mathrm{QML})=2$ if on $\mathrm{OML}, .5$ if not.
Metal Type $=1$ for Al, 37.5 for ALCu or for Al-Si-Cu
$\mathrm{J}=$ The mean absolute value of Metal Current Density (in $10^{6} \mathrm{Amps} / \mathrm{cm}^{2}$)
$\sigma_{\text {MET }} \quad=$ sigma obtained from test data on electromigration failures from the same or a similar process. If this data is not available use $\sigma_{\text {meT }}=1$.
$1=$ time (in 10^{6} hrs.)

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

HOT CARRIER FAILURE RATE EQUATION

$$
\begin{aligned}
& \lambda_{H C}=\frac{.399}{\left(t+t_{0}\right) \sigma_{H C}} \exp \left[\frac{-.5}{\sigma_{H C}^{2}}\left(\ln \left(t+t_{0}\right)-\ln t_{50_{H C}}\right)^{2}\right] \\
& t_{50_{H C}}=\frac{(Q M L) 3.74 \times 10^{-5}}{A_{T_{H C}} I_{d}}\left(\frac{I_{\mathrm{SUb}}}{I_{\mathrm{d}}}\right)^{-2.5} \\
&(\mathrm{OML})=2 \text { it on QML, } 5 \text { it not }
\end{aligned}
$$

$$
A_{T_{H C}}=\exp \left[\frac{.039}{8.617 \times 10^{-5}}\left(\frac{1}{T_{J}}-\frac{1}{298}\right)\right]\left(\text { where } T_{J}=T_{C}+\theta_{J C} P\left(\text { in }{ }^{\circ} K\right)\right)
$$

id $=$ Drain Current at Operating Temperature. If unknown use $I_{d}=3.5 e^{-.00157} \mathrm{~T}_{\mathrm{J}}$ (in $\left.{ }^{\circ} \mathrm{K}\right)(\mathrm{mA})$
$I_{\text {sub }}=$ Substrate Current at Operating Temperature. If unknown use

$$
\mathrm{I}_{\mathrm{sub}}=.0058 \mathrm{e}^{-.00689 \mathrm{~T}_{J}\left(\mathrm{in}{ }^{\circ} \mathrm{K}\right)}(\mathrm{mA})
$$

$\sigma_{\mathrm{HC}} \quad=\quad$ sigma derived from test data, if not available use 1.
$\mathrm{t}_{0} \quad=\mathrm{A}_{\mathrm{T}_{H C}}$ (at Screening Temp.(in $\left.{ }^{\circ} \mathrm{K}\right)$) *(Test Duration in 10^{6} hours)
$1=$ time (in 10^{6} hrs.)

CONTAMINATION FAILUBE BATE EQUATION

$A_{T_{C O N}}=\exp \left[\frac{-1.0}{8.617 \times 10^{-5}}\left(\frac{1}{T_{J}}-\frac{1}{298}\right)\right]$ (where $T_{J}=T_{C}+\theta_{J C} P\left(\right.$ in ${ }^{\circ}$ K) $)$
$t_{0}=$ Effective Screening Time
$={ }^{A} \mathrm{~T}_{\text {con }}$ (at screening junction temperature (in $\left.{ }^{\circ} \mathrm{K}\right)$) • (actual screening time in $10^{6} \mathrm{hrs}$.)
$1 \quad=$ time (in $10^{6} \mathrm{hrs}$.)

MIL-HDBK-217F

APPENDIX B: VHSIC/VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

PACKAGE FAILURE RATE EQUATION

$\lambda_{P A C}=\left(.0024+1.85 \times 10^{-5}(\#\right.$ Pins $\left.)\right) \pi_{E} \pi_{Q} \pi_{P T}+\lambda_{P H}$
$\pi_{E} \quad=\quad$ See Section 5.10
$\pi_{\mathrm{Q}}=$ See Section 5.10

Package Type Factor (Π_{P})

Package Type	$\bar{\Pi}_{\text {PT }}$
DIP	1.0
Pin Grid Array	2.2
Chip Carrier (Surface Mount Technology)	4.7

$\lambda_{\mathrm{PH}}=$ Package Hermeticity Factor
$\lambda_{\text {PH }}=0$ for Hermetic Packages
$\lambda_{\mathrm{PH}}=\frac{.399}{t_{\mathrm{PH}}} \exp \left[\frac{-.5}{\sigma_{\mathrm{PH}}{ }^{2}}\left(\ln (\mathrm{t})-\ln \left(\mathrm{t}_{50 \mathrm{PH}}\right)^{\prime}\right)^{2}\right]$ tor plastic packages
${ }^{t_{50}}{ }_{P H}=86 \times 10^{-6} \exp \left[\frac{2}{8.617 \times 10^{-5}}\left(\frac{1}{T_{A}}-\frac{1}{298}\right)\right] \exp \left[\frac{2.96}{R H_{E F F}}\right]$
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temp. (in ${ }^{\circ} \mathrm{K}$)
$R H_{\text {eff }}=(D C)(R H)\left[e^{5230}\left(\frac{1}{T_{J}}-\frac{1}{T_{A}}\right)\right]+(1-D C)(R H)$ where $T_{J}=T_{C}+\theta_{J C} P$ (in $\left.{ }^{\circ} K\right)$
(for example, for 50% Relative Humidity, use $\mathrm{RH}=.50$)
$\sigma_{\mathrm{PH}}=.74$
$1=$ time (in 10^{6} hrs.)

MIL-HDBK-217F

APPENDIX B: VHSIC-VHSIC-LIKE AND VLSI CMOS (DETAILED MODEL)

EOSAESD FAULURE PATE EQUATION

$\lambda_{\text {EOS }}=\frac{-\ln \left(1-.00057 e^{-.0002 V_{T H}}\right)}{.00876}$
$V_{T H}=$ ESD Threshold of the device using a $100 \mathrm{pF}, 1500$ ohm discharge model

MISCELLANEOUS FAILURE BATE EQUATION

$$
\begin{aligned}
& \lambda_{\text {MIS }}=\left(.01 \mathrm{e}^{-2.2 \mathrm{t}_{0}}\right)\left(\text { A }_{\text {M MIS }}\right)\left(\mathrm{e}^{\left.-2.2 A T_{\text {MIS }}{ }^{t}\right)}\right. \\
& { }^{\text {A }} \text { TMIS }=\text { Temperature Acceieration Factor } \\
& =\exp \left[\frac{. .423}{8.6317 \times 10^{-5}}\left(\frac{1}{T_{J}}-\frac{1}{298}\right)\right] \\
& \text { where } T_{J}=T_{C}+\theta_{J C} P \text { (in }{ }^{\circ} K \text {) } \\
& t_{0}=\text { Effective Screening Time } \\
& =A^{T_{\text {MIS }}} \text { (at Screening Temp. (in }{ }^{\circ} \mathrm{K} \text {)) }{ }^{*} \text { Actual Screening Time (in } 10^{6} \text { hours) } \\
& t=\text { time (in } 10^{6} \text { hrs.) }
\end{aligned}
$$

Publications listed with "AD" numbers may be obtained from:
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22151
(703) 487-4650
U.S. Defense Contractors may obtain copies from:

Defense Technical Information Center
Cameron Station - FDA, Bldg. 5
Alexandria, VA 22304-6145
(703) 274-7633

Documents with $A D$ number prefix with the letter " B " or with the suffix " L ": These documents are in a "Limfied Distribution" category. Contact the Defense Technical Information Center for ordering procedures.

Copies of MIL-STDS's, MIL-HDBK's, and specifications are available from:
Standardization Document Order Desk
700 Robins Ave.
Building 4, Section D
Philadelphia, PA 19111-5094
(215) 697-2667

The year of publication of the Rome Laboratory (RL) (formerty Rome Air Development Center (RADC)) documents is part of the RADC (or RL) number, e.g., RADC-TR-88-97 was published in 1988.

1. "Laser Reliability Prediction," RADC-TR-75-210, AD A016437.
2. "Reliability Model for Miniature Blower Motors Per MIL-B-23071B," RADC-TR-75-178, AD A013735.
3. "High Power Microwave Tube Reliability Study," FAA-RD-76-172, AD A0033612.
4. "Electric Motor Reliability Model," RADC-TR-77-408, AD A050179.
5. "Development of Nonelectronic Part Cyclic Failure Rates," RADC-TR-77-417, AD A050678.

This study developed new failure rate models for relays, switches, and connectors.
6. "Passive Device Failure Rate Models for MIL-HDBK-217B," RADC-TR-77-432, AD A050180.

This study developed new falure rate models for resistors, capacitors and inductive devices.
7. "Quantification of Prirted Circuit Board Connector Reliablitty," RADC-TR-77-433, AD A049980.
8. "Crimp Connection Reliability," RADC-TR-78-15, AD A050505.
9. "LSI/Microprocessor Reliability Prediction Model Development," RADC-TR-79-97, AD A068911.
10. "A Redundancy Notebook," RADC-TR-77-287, AD A050837.
11. "Revision of Environmental Factors for MIL-HDBK-217B," RADC-TR-80-299, AD A091837.

APPENDIX C: BIBLIOGRAPHY

12. "Traveling Wave Tube Faikure Rates," RADC-TR-80-288, AD A096055.
13. "Reliability Prediction Modeling of New Devices," RADC-TR-80-237, AD A090029.
This study developed faikre rate modets for magnetic bubble memories and charge-coupled memories.
14. "Failure Rates for Fiber Optic Assemblies," RADC-TR-80-322, AD A092315.
15. "Printed Wiring Assembly and Interconnection Reliability," RADC-TR-81-318, AD A111214.
This study developed faiture rate models for printed wining assemblies, solderless wrap assemblies, wrapped and soldered assemblies and discrete wiring assemblies with electroless deposited plated through holes.
16. "Avionic Envinonmental Factors for MIL-HDBK-217," RADC-TR-81-374, AD B064430L.
17. "RADC Thermal Guide for Reliability Engineers," RADC-TR-82-172, AD A118839.
18. "Reliability Modeling of Critical Electronic Devices," RADC-TR-83-108, AD A135705.
This report developed faiture rate prediction procedures for magnetrons, vidicions, cathode ray tubes, semiconductor lasers, helium-cadmium lasers, helium-neon lasers, Nd: YAG lasers, electronic filters, solid state relays, time delay relays (electronic hybrid), circuit breakers, I.C. Sockets, thumbwheel switches, electromagnetic meters, fuses, crystals, incandescent lamps, neon glow lamps and surface acoustic wave devices.
19. "impact of Nonoperating Periods on Equipment Rellability," RADC-TR-85-91, AD A158843.

This study developed failure rate models for nonoperating periods.
20. "RADC Nonelectronic Reliability Notebook," RADC-TR-85-194, AD A163900.

This report contains failure rate data on mechanical and electromechanical parts.
21. "Reliability Prediction for Spacecraft," RADC-TR-85-229, AD A149551.

This study investigated the reliability performance histories of 300 Satellite vehicles and is the basis for the halving of all model π_{E} factors for MIL-HDBK-217E to MIL-HDKB-217E, Notice 1.
22. "Surface Mount Tectnology: A Reliability Review," 1986, Available from Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, 800-526-4802.
23. "Thermal Resistances of Joint Army Navy (JAN) Certified Microcircuit Packages," RADC-TR-86-97. AD B108417.
24. "Large Scale Memory Error Detection and Correction," RADC-TR-87-92, AD B117765L.

This study developed models to calculate memory system reliability for memories incorporating error detecting and correcting codes. For a summary of the study see 1989 IEEE Reliability and Maintainability Symposium Proceedings, page 197, "Accounting for Soft Errors in Memory Reliability Prediction."
25. "Reliability Analysis of a Surface Mounted Package Using Finite Element Simulation," RADC-TR-87177. AD A189488.
26. "VHSIC Impact on System Reliability," RADC-TR-88-13, AD B122629.
27. "Reliability Assessment of Surface Mount Tectrnology," RADC-TR-88-72, AD A193759.
28. "Reliability Prediction Models for Discrete Semiconductor Devices," RADC-TR-88-97, AD A200529.

This study developed new faikure rate prediction models for GaAs Power FETS, Transient Suppressor Diodes, inírared LEDs, Diode Array Displays and Current Reguiaior Diodes.
29. "Impact of Fiber Optics on System Reliability and Maintainability," RADC-TR-88-124, AD A201946.
30. "VHSICIVHSIC Like Reiliability Predicion Modeing," RADC-TR-89-171, AD A214601.

This study provides the basis for the VHSIC model appearing in MIL-HDBK-217F, Section 5.
31. "Reliability Assessment Using Finite Element Techniques," RADC-TR-89-281, AD A216907.

This study addresses surface mounted solder interconnections and microwire board's plated-thru-hole (PTH) connections. The report gives a detailed account of the factors to be considered when periorming an FEA and the procedure used to transfer the results to a reliability figure-of-merit.
32. "Reliability Analysis/Assessment of Advanced Technologies," RADC-TR-90-72, ADA 223647.

This study provides the basis for the revised microctrcuit models (except VHSIC and Buthe Memories) appearing in MIL-HDBK-217F, Section 5.
33. "Improved Reliability Prediction Model for Field-Access Magnetic Bubble Devices," AFWAL-TR-811052.
34. "Reliability/Design Thermal Applications," MIL-HDBK-251.
35. "NASA Parts Application Handbook," IALL-HDBK-978-B (NASA).

This handtook is a five volume series which discusses a full range of electrical, electronic and electromechanical component parts. It provides extensive detailed technical information for each component part such as: definitions, construction details, operating characteristics, derating, taikure mechanisms, screening techniques, standard parts, environmental considerations, and circuit application.
36. "Nonelectronic Parts Reliability Data 1991," NPRD-91.

This report contains field faiture rate data on a variety of electrical, mechanical, electromechanical and microwave parts and assemblies (1400 different part types). It is available from the Reliability Analysis Center, PO Box 4700, Rome, NY 13440-8200, Phone: (315) 337-0900.

Custodians:
Army - CR
Navy-EC
Air Force - 17

Preparing Activity:
Air Force - 17
Project No. RELI-0064

MIL-HDBK-217F

APPENDIX C: BIBLIOGRAPHY

Review Actinties:

Army - MI, AV, ER
Navy - SH, AS, OS
Air Force - 11, 13, 14, 15, 18, 19, 99

User Activities:
Army - AT, ME, GL
Naw - CG, MC, YD, TD
Air Force - 85

WSTRUCTIONS: in a continuing effort to make our standerdization documents betuer, the DoD provides this form for use in subrriting comments and sugpestions tor improvementa. All users of millivy standerdization documents are invited to provide suggestions. This form may be depected, folded along the Ines indicated, mped along the locee edoe (DO NOT STAFLE), and mailed. In block 5, be as apectic as poselible aboul perticiler problem soes ash as mording which requited immpresaion, wee wo rigid, restrictiv, locee, ambiguous, or was incompmible, and give propoeed wording
 acknowledgement will be meiled to you witin 30 diyg to bet you lonow that your comments were received and are boing conadered.

NOTE: This form may not be weed to request copies of docurnents, nor to requast waivers, deviations, or clarification of epecification requirements on current connects. Commentes aubmitued on this form do not conatithe or impty authorization to waive any portion of the referenced document(s) or to arnend contractual requirements.

DEPARTMENT OF THE AR FORCE
RLERSS
Griffiss AFB, NY 13441-5700

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $\$ 300$

Rome Laboratory
ATTN: RLERSS
Griffiss AFB, NY 13441-5700

[^0]: - H a mating pair of connectors uses two types of insert materials, use the average of the base failure rates for the two insert material types. See following page for insert material determination.

[^1]: "Caution: Excessive Mating-Demating Cycies May Seriousiy Degrade Reliabiiity

[^2]: NOTE: 1) ${ }^{-}$Not Normally used in this Environment
 2) $T_{A}=$ Default Component Amblert Temperature (${ }^{\circ} \mathrm{C}$)

[^3]:

