Reliability and Quality in Microelectronic Manufacturing

Reliability and Quality in Microelectronic Manufacturing

$65.00

The manufacture of microcircuits begins with the silicon or gallium arsenide wafer and, after several processing operations, results in a fully packaged electronic component. For semiconductor manufacturing, the processing operations allow the industry to design-in reliability through the proper selection of materials, processing parameters, and technologies. The student of manufacturing must therefore be taught the critical relationships between manufacturing, reliability, and quality. These relationships are even more critical in fabrication steps which involve elevated temperatures, e.g., thin film deposition, oxidation and diffusion/implantation. The rapid progress achieved in microelectronics is the result of a planar technology using resists and lithography, which has made it possible to process thousands of transistors in a single circuit.

*NOTE: Available as a PDF Download File Only

Product Description

The manufacture of microcircuits begins with the silicon or gallium arsenide wafer and, after several processing operations, results in a fully packaged electronic component. For semiconductor manufacturing, the processing operations allow the industry to design-in reliability through the proper selection of materials, processing parameters, and technologies. The student of manufacturing must therefore be taught the critical relationships between manufacturing, reliability, and quality. These relationships are even more critical in fabrication steps which involve elevated temperatures, e.g., thin film deposition, oxidation and diffusion/implantation. The rapid progress achieved in microelectronics is the result of a planar technology using resists and lithography, which has made it possible to process thousands of transistors in a single circuit.

Table of Contents

1 Microelectronics Industry and Manufacturing Trends in Reliability       1
  1.1 Introduction     1
  1.2 Built-In Reliability Approach      4
  1.3 Manufacturing Yield and Reliability      7
  1.4 Reliability, Yield and Quality Applied to Microelectronics      9
  1.5 Summary     11
  1.6 References     13
2 Multiple use Microelectronics: A Reliability Approach       15
  2.2 Approaches and Misconceptions      17
    2.2.1 Product Demonstrators   18
    2.2.2 Manufacturing Technologies and Innovation    18
    2.2.3 Communications System Life Cycle Costing and R/D Selection   20
    2.2.4 Present Specifications And Practices   20
  2.3 Integration of Defense and Commercial Products: The Proposed Solution     24
    2.3.1 Microelectronics    24
    2.3.2 Availability of Commercial Components    25
  2.4 Electronic Assemblies     30
  2.5 Priorities for The 2000s In Electronics      32
    2.5.1 Peripheral Technologies   37
    2.5.2 Commercial Specifications and Processes    37
  2.6 Where Is The Competition?      38
  2.7 Current Hopes and Summary     39
  2.8 References     41
3 Manufacturing Yield and Reliability        43
  3.1 Manufacturing Yield and Reliability      43
    3.1.1 Mechanisms of Yield Loss   43
    3.1.2 Uniform Density of Point Defects   44
    3.1.3 Simple Non-Uniform Distributions of Defects (D0)    45
  3.2 Failure Distributions/Reliability Functions in Microelectronics     49
    3.2.1 Cumulative Distribution Function (cdf)    50
  3.3 Reliability Indicators In Microelectronics      60
    3.3.1 Emission Microscopy for Reliability Indication    61
    3.3.2 IDDQ as A Reliability Indicator    62
    3.3.3 Other Reliability Indicators   65
    3.3.4 Algorithm To Incorporate Noise Tests in Microcircuit Fabrication    67
    3.3.5 Summary   68
  3.4 References     69
4 Manufacturing of Microcircuits for Reliability       71
  4.1 Introduction     71
  4.2 Microelectronic Circuit Elements      73
  4.3 VLSI Device Fundamentals     76
    4.3.1 Materials    76
    4.3.2 Device Classification    77
    4.3.3 VLSI Device Parameters   81
    4.3.4 Device Models and Parameters   81
  4.4 Data-Base Management System for IC Manufacture      82
    4.4.1 Computer Integrated Manufacturing   84
    4.4.2 Data-Base Management System and Data Correlation   85
    4.4.3 Correlation Analysis    85
  4.5 References     89
5 Crystal Growth and Substrate Mechanisms       91
  5.1 Silicon Starting Material      91
  5.2 Crystal Growth Theory      91
  5.3 Crystal Characteristics and Evaluationy      94
    5.3.1 Processing Preparation   97
    5.3.2 Yield Strength of Silicon   98
  5.4 Epitaxial Growth on Semiconductor Substrates      98
    5.4.1 VPE of Silicon    99
    5.4.2 Advanced CVD Methods: MBE    102
  5.5 Substrate Mechanical Failures and Reliability     104
    5.5.1 Thermal-Mechanical Stresses in Semiconductor Substrates    106
  5.6 Failure Mechanisms and Damage Models of The Semiconductor Substrate      115
    5.6.1 Brittle Fracture    115
    5.6.2 Fatigue Crack Initiation and Propagation    121
    5.6.3 Mechanical Properties of GaAs Wafers   123
    5.6.4 Modulus of Elasticity    124
    5.6.5 Modulus of Rupture    127
    5.6.6 Coefficient of Thermal Expansion and Summary   132
  5.7 Approach for Mechanical Reliability Design      134
    5.7.1 Design Variables and Constraints    136
  5.8 References     137
6 Oxidation and Dielectrics in Microcircuit Processing        141
  6.1 Introduction to Oxidation     141
  6.2 Redistribution of Impurities During Oxidation     145
  6.3 The Thermal Oxidation Process     147
  6.4 Chemically Vapor Deposited (CVD) Films     148
    6.4.1 Sputtered Dielectric Films    149
    6.4.2 Silicon Nitride   149
  6.5 Charge Stability and Reliability Implications     149
    6.5.1 Radiation Induced Trapped Charge    152
    6.5.2 Negative Bias Instability   152
    6.5.3 Hot Carrier Trapping in SiO2    153
  6.6 Summary     154
  6.7 References     155
7 Reliable Active Layer Doping by Diffusion and Ion Implantation       157
  7.1 Introduction to Active Layer Formation      157
    7.1.1 Diffusion    157
    7.1.2 Diffusion of Zn → GaAs From SiO2    161
  7.2 Layout Design Guidelines     167
  7.3 Ion Implantation for Active Layer Doping      168
    7.3.1 Cross-Sections and Stopping Powers   170
    7.3.2 Ion Channeling   172
    7.3.3 Material Damage by Ion Implantation    173
  7.4 Summary     174
8 Pattern Transfer in Microcircuit Manufacturing        175
  8.1 VLSI Lithography     175
    8.1.1 Photoresist Composition    176
    8.1.2 Manufacturing Technology   176
    8.1.3 Basics of Lithography    178
  8.2 Optical Lithography     185
    8.2.1 Modified Illumination Technology   185
    8.2.2 Resolution Limit    187
    8.2.3 Practical Resolution    187
    8.2.4 Advanced Image Formation Techniques    188
  8.3 Electron Beam Lithography     189
    8.3.1 Technology Trends    190
    8.3.2 Mask Manufacturing   191
  8.4 X-Ray Lithography      191
    8.4.1 Various Forms of X-Ray Lithography    192
    8.4.2 Limits of X-Ray Lithography    192
  8.5 Key Lithography Equations      194
    8.5.2 Projection Printing    195
    8.5.3 Electron Beam Lithography    196
    8.5.4 Electron Optics   197
    8.5.5 X-Ray Lithography Sources   198
  8.6 Summary     200
  8.7 References     201
9 Metallizations for Devices and Circuits        203
  9.1 Failure Mechanisms of VLSI And GaAs IC Metallizations      203
    9.1.1 Corrosion of Al Interconnects   203
    9.1.2 Metallization Reliability Issues   204
    9.1.3 Gold Bonding and IC Failures    204
  9.2 The Gold Bond Failure Mechanism     205
    9.2.1 Failure Mechanism Related to Contamination   206
    9.2.2 The Failure Modes    213
  9.3 Electromigration In Microcircuit Metallizations      215
    9.3.1 Electromigration Under Circuit Conditions   216
    9.3.2 Empirical Electromigration Results    222
    9.3.3 Reducing Electromigration Data   226
    9.3.4 Design and Manufacturing Guidelines    229
  9.4 References     231
10 Device Packaging and Microcircuit Characterization       235
  10.1 Packaging and Reliability      235
    10.1.1 Market Trend Towards Surface Mount Packages    235
    10.1.2 Computer Modeling of Stress in Silicon and Molding Compound   237
    10.1.3 Test Structures for Package and Product Reliability   238
  10.2 Chip Preparation for Plastic Package Reliability     241
    10.2.1 Flip-Chip Technology and Thermal Fatigue   241
    10.2.2 Molding Compounds and Thermal Characterization of Packages   241
    10.2.3 Surface Mount Technology   243
    10.2.4 High Pin Count and Tape Automated Bonding   245
  10.3 Introduction to Characterization of Manufacturing and Reliability      246
    10.3.1 Analytical Techniques   246
    10.3.2 Compound Analysis Techniques   255
  10.4 Selection of Characterization Method     259
    10.4.1 Nature and Range of Data Yield    259
    10.4.2 Beam Induced Damage    259
    10.4.3 Detection Limits   259
    10.4.4 Sampling Depth and Spatial Resolution   259
  10.5 References     261
11 Manufacturing of Plastic Integrated Circuits        263
  11.1 Introduction     263
  11.2 Primary Package Concerns      263
    11.2.1 Device Susceptibility   264
    11.2.2 Package Design    265
    11.2.3 Material Control    265
    11.2.4 Process Control    265
  11.3 Materials for Molded Plastic Packages     265
    11.3.1 Molding Compounds   265
    11.3.2 Die Attach Adhesives   270
    11.3.3 Leadframe Materials    271
  11.4 Manufacturing Process and Process Flow      272
    11.4.1 Transfer Molding Process    274
    11.4.2 Injection Molding Process   281
    11.4.3 Reaction Injection Molding Process   282
  11.5 Manufacturing Defects     282
    11.5.1 Package Cracking   282
    11.5.2 Paddle Shift    283
    11.5.3 Wire Sweep    283
    11.5.4 Defect Location    283
    11.5.5 Passivation Layer Cracking   284
    11.5.6 Delamination of Interfaces    284
    11.5.7 Metallization Deformation    284
    11.5.8 Ball-Bond Liftoff, Shearing, and Fracture    286
  11.6 Package Mounting      288
    11.6.1 Through-Hole Mounting    288
    11.6.2 Surface Mount Technology   289
  11.7 Non-Destructive Failure Analysis of Plastic Packages     294
    11.7.1 Scanning Acoustic Microscope    294
    11.7.2 Scanning Laser Acoustic Microscope   294
12 Manufacturing of Microelectro Mechanical Systems and Computer Aided Control of Micromachining       299
  12.1 Introduction to Microelectromechanical Systems     299
  12.2 MEMS Devices     300
    12.1.1 Sensors    300
    12.2.2 Microactuators   304
  12.3 MEMS Fabrication Technology      307
    12.3.1 Bulk Micromachining    307
    12.3.2 Surface Micromachining   308
    12.3.3 Liga Process    311
  12.4 Computer Aided Design of Micromachining     312
    12.4.1 CAD tools   312
    12.4.2 CAD architecture   313
13 Reliable Manufacturing of Electronic Packages        319
  13.1 Introduction     319
  13.2 Surface-Mount Technology by Robots     319
  13.4 Assembly System Configurations     323
    13.4.1 Single workstation assembly systems    323
    13.4.2 Series assembly systems    323
    13.4.3 Parallel assembly systems    324
    13.4.4 Other assembly system configurations   324
  13.5 Industrial Robot Configurations      325
    13.5.1 Articulated or revolute configuration   328
    13.5.2 SCARA configuration    329
    13.5.3 Working coordinate system for robotic assembling   330
  13.6 End Effectors      331
    13.6.1 Description of end effectors    331
    13.6.2 End effector path generation    334
  13.7 Analysis of The Assembly Processes      335
    13.7.1 Description of robotic tools for electronic assemblies    336
  13.8 Summary     337
  13.9 References     339
14 Manufacturing of Electronic Microwave Substrates for Packaging of Monolithic Microwave Circuits        341
  14.1 Introduction     341
  14.2 Manufacturing Processes for LTCC      342
    14.2.1 Material preparation   344
    14.2.3 Layer personalization    348
    14.2.4 Substrate fabrication   350
  14.3 Electrical Properties      352
    14.3.1 Dielectric constant   353
    14.3.3 Crosstalk coupling noise    355
    14.3.4 Loss tangent   356
    14.3.6 Skin effect    369
  14.4 Mechanical Properties     370
  14.5 Physical Properties     370
    14.5.1 Surface characteristics   370
    14.5.2 Surface Impurities    372
    14.5.3 Bulk quantitative and qualitative analysis   372
  14.6 Failure Mechanisms and Models      372
    14.6.1 Substrate fracture   373
    14.6.2 Fatigue crack propagation in the substrate    373
  14.7 Tests to Detect Adhesion Failures Between Layers of LTCC Sheets     373
    14.7.1 X-Ray photo-electron spectroscopy (XPS or ESCA) analysis   374
    14.7.2 Microhardness analysis    374
  14.8 Applications      374
    14.8.1 Application of LTCC substrates for microwave frequencies    374
    14.8.2 Other Applications of LTCC substrates    374
Index        374

You may also be interested in…