Reliability of High Temperature Electronics

Reliability of High Temperature Electronics

Starting at: $65.00

Standard electronic devices are based on military-type semiconductors which are rated for 125°C. Without cooling, engine-located electronics in many applications can face operating temperatures between -55°C and +200°C. Thus, the development of appropriate 200°C and higher semiconductor devices will make it necessary to utilize air or liquid as the cooling medium. This book provides a working knowledge of high temperature devices/packaging, addressing the reliability and packaging concerns for designing at elevated temperatures.

LIMITED QUANTITIES OF HARDCOPY WHILE SUPPLIES LAST

Clear

Product Description

Standard electronic devices are based on military-type semiconductors which are rated for 125°C. Without cooling, engine-located electronics in many applications can face operating temperatures between -55°C and +200°C. Thus, the development of appropriate 200°C and higher semiconductor devices will make it necessary to utilize air or liquid as the cooling medium. This book provides a working knowledge of high temperature devices/packaging, addressing the reliability and packaging concerns for designing at elevated temperatures.

Additional information

Format

Download, Hardcopy

Table of Contents

1 Background on The Behavior of Bipolar and MOS Transistors and Inverters
at High Temperatures      
1
  1.1 Introduction      1
  1.2 Background In High Temperature Electronics     1
    1.2.1 Cmos And BJT High Temperature Operation    2
    1.2.2 Latch-Up   8
  1.3 High Temperature Silicon Device Behavior, Summary     10
2 Bipolar Junction Transistor At Elevated Temperatures        15
  2.1 Operation of The Bipolar Junction Transistor     15
  2.2 Model of The Bipolar Junction Transistor      19
  2.3 Temperature Dependent Parameters of The BJT     22
  2.4 Temperature Dependence of Current Gain (β)     25
  2.5 Temperature Dependence Of Bjt Inverter Circuit      26
References        29
3 Computer Simulations of Bipolar Junction Transistor and Experimental
Validation      
31
  3.1 Simulations at Elevated Temperatures      31
    3.1.2 Pspice Simulations for High Temperature Electronics   33
  3.2 Experimental Analysis of BJT Behavior      35
    3.2.1 Beta Versus Temperature    35
  3.3 Bjt Inverter Voltage Transfer Characteristic at Elevated Temperatures     37
  3.4 Electrical Measurements To Obtain BJT Thermal Resistance      39
  3.5 Observations of Bipolar Junction Transistor Behavior at High Temperatures     41
    3.5.1 Beta Versus Temperature Dependence    41
  3.6 Bipolar Transistor Voltage Transfer Characteristics (VTC)      42
References        45
4 Introduction To The High Temperature Behavior of The Metal Oxide Silicon
Field Effect Transistor       
47
  4.1 Physical Operation of a MOSFET     47
  4.2 Temperature Dependent Parameters     50
  4.3 N-MOS Inverter Voltage Transfer Characteristic ( VTC )     51
  4.4 Cmos Inverter Voltage Transfer Characteristic     53
  4.5 Propagation Delay of The Cmos Inverter     58
  4.6 Simulations of The NMOS Inverter VTC      61
    4.6.1 Computer Simulations    61
    4.6.2 Pspice Simulation    62
  4.7 Computer Simulations of The Cmos Inverter VTC      63
    4.7.1 Program Simulation   63
    4.7.2 Pspice Simulation    64
    4.7.3 Propagation Delay of The CMOS Inverter   65
  4.8 Experimental Analysis of The NMOS Inverter      67
  4.9 Observations of MOSFET Behavior at High Temperatures     69
    4.9.1 NMOS Inverter   69
    4.9.2 CMOS Inverter    70
  4.10 Conclusions      71
  4.11 Recommendations for Further Work     72
References        73
5 High Temperature Modeling and Thermal Characteristics of GaAs
MESFETs      
75
  5.1 Introduction      75
  5.2 State-Of-The-Art for Modeling High Temperature Characteristics     77
  5.3 Chapter Outline and Objectives     78
  5.4 Physical Properties of MESFETs at Elevated Temperatures      79
    5.4.1 Gallium Arsenide    79
    5.4.2 Energy Gaps and Intrinsic Carrier Densities    79
  5.5 Carrier Mobilities and Saturation Velocity     84
  5.6 Modeling of MESFETs      88
    5.6.1 Introduction    88
    5.6.2 Principles of MESFET Operation    89
    5.6.3 Linear Region of MESFET Characteristics   90
    5.6.4 Saturation Region Model   91
  5.7 Empirical MESFET Model     92
  5.8 Temperature Related Properties of GaAs MESFET     96
References        101
6 Computer Simulation and Electrical Measurements of The MESFET
Temperature Dependence      
103
  6.1 Introduction To The Simulation of Temperature Dependence     103
  6.2 Simulation Results for The MESFET     105
    6.2.1 Comparison of MESFET Simulation: Hyperbolic and
Quadratic Model  
105
    6.2.2 Simulation Results of The ZTC Bias Point of GaAs MESFET   114
    6.2.3 Temperature Dependent Characteristics of The GaAs MESFET    126
    6.2.4 Electrical Measurement at Elevated Temperatures   135
  6.3 Thermal Measurements of GaAs Devices Using IR Microscopy Techniques
    
138
    6.3.1 Operation Principle of The IR Microscope   138
    6.3.2 IR Microscopy Measurement Results   140
  6.4 Finite Element Analysis of Heat Transfer In The GaAs MESFET      142
    6.4.1 General Mathematical Assumptions and Model   142
    6.4.2 Simulation Results and Comparison with Measurements   143
  6.5 Summary and Conclusions      146
7 Temperature Effects of Heterostructure Transistors and Circuits       151
  7.1 Introduction      151
  7.2 Physical Properties of AlGaAs/GaAs HFET     152
    7.2.1 AlGaAs/GaAs HFET Device Structures    152
    7.2.2 Principles of HFET Operation   153
    7.2.3 Modulation Doping    154
  7.3 Aim-Spice HFET Model      155