Reliability of High Temperature Electronics

Reliability of High Temperature Electronics

Starting at: $65.00

Standard electronic devices are based on military-type semiconductors which are rated for 125°C. Without cooling, engine-located electronics in many applications can face operating temperatures between -55°C and +200°C. Thus, the development of appropriate 200°C and higher semiconductor devices will make it necessary to utilize air or liquid as the cooling medium. This book provides a working knowledge of high temperature devices/packaging, addressing the reliability and packaging concerns for designing at elevated temperatures.

LIMITED QUANTITIES OF HARDCOPY WHILE SUPPLIES LAST

Clear

Product Description

Standard electronic devices are based on military-type semiconductors which are rated for 125°C. Without cooling, engine-located electronics in many applications can face operating temperatures between -55°C and +200°C. Thus, the development of appropriate 200°C and higher semiconductor devices will make it necessary to utilize air or liquid as the cooling medium. This book provides a working knowledge of high temperature devices/packaging, addressing the reliability and packaging concerns for designing at elevated temperatures.

Additional information

Format

Download, Hardcopy

Table of Contents

1 Background on The Behavior of Bipolar and MOS Transistors and Inverters
at High Temperatures      
1
  1.1 Introduction      1
  1.2 Background In High Temperature Electronics     1
    1.2.1 Cmos And BJT High Temperature Operation    2
    1.2.2 Latch-Up   8
  1.3 High Temperature Silicon Device Behavior, Summary     10
2 Bipolar Junction Transistor At Elevated Temperatures        15
  2.1 Operation of The Bipolar Junction Transistor     15
  2.2 Model of The Bipolar Junction Transistor      19
  2.3 Temperature Dependent Parameters of The BJT     22
  2.4 Temperature Dependence of Current Gain (β)     25
  2.5 Temperature Dependence Of Bjt Inverter Circuit      26
References        29
3 Computer Simulations of Bipolar Junction Transistor and Experimental
Validation      
31
  3.1 Simulations at Elevated Temperatures      31
    3.1.2 Pspice Simulations for High Temperature Electronics   33
  3.2 Experimental Analysis of BJT Behavior      35
    3.2.1 Beta Versus Temperature    35
  3.3 Bjt Inverter Voltage Transfer Characteristic at Elevated Temperatures     37
  3.4 Electrical Measurements To Obtain BJT Thermal Resistance      39
  3.5 Observations of Bipolar Junction Transistor Behavior at High Temperatures     41
    3.5.1 Beta Versus Temperature Dependence    41
  3.6 Bipolar Transistor Voltage Transfer Characteristics (VTC)      42
References        45
4 Introduction To The High Temperature Behavior of The Metal Oxide Silicon
Field Effect Transistor       
47
  4.1 Physical Operation of a MOSFET     47
  4.2 Temperature Dependent Parameters     50
  4.3 N-MOS Inverter Voltage Transfer Characteristic ( VTC )     51
  4.4 Cmos Inverter Voltage Transfer Characteristic     53
  4.5 Propagation Delay of The Cmos Inverter     58
  4.6 Simulations of The NMOS Inverter VTC      61
    4.6.1 Computer Simulations    61
    4.6.2 Pspice Simulation    62
  4.7 Computer Simulations of The Cmos Inverter VTC      63
    4.7.1 Program Simulation   63
    4.7.2 Pspice Simulation    64
    4.7.3 Propagation Delay of The CMOS Inverter   65
  4.8 Experimental Analysis of The NMOS Inverter      67
  4.9 Observations of MOSFET Behavior at High Temperatures     69
    4.9.1 NMOS Inverter   69
    4.9.2 CMOS Inverter    70
  4.10 Conclusions      71
  4.11 Recommendations for Further Work     72
References        73
5 High Temperature Modeling and Thermal Characteristics of GaAs
MESFETs      
75
  5.1 Introduction      75
  5.2 State-Of-The-Art for Modeling High Temperature Characteristics     77
  5.3 Chapter Outline and Objectives     78
  5.4 Physical Properties of MESFETs at Elevated Temperatures      79
    5.4.1 Gallium Arsenide    79
    5.4.2 Energy Gaps and Intrinsic Carrier Densities    79
  5.5 Carrier Mobilities and Saturation Velocity     84
  5.6 Modeling of MESFETs      88
    5.6.1 Introduction    88
    5.6.2 Principles of MESFET Operation    89
    5.6.3 Linear Region of MESFET Characteristics   90
    5.6.4 Saturation Region Model   91
  5.7 Empirical MESFET Model     92
  5.8 Temperature Related Properties of GaAs MESFET     96
References        101
6 Computer Simulation and Electrical Measurements of The MESFET
Temperature Dependence      
103
  6.1 Introduction To The Simulation of Temperature Dependence     103
  6.2 Simulation Results for The MESFET     105
    6.2.1 Comparison of MESFET Simulation: Hyperbolic and
Quadratic Model  
105
    6.2.2 Simulation Results of The ZTC Bias Point of GaAs MESFET   114
    6.2.3 Temperature Dependent Characteristics of The GaAs MESFET    126
    6.2.4 Electrical Measurement at Elevated Temperatures   135
  6.3 Thermal Measurements of GaAs Devices Using IR Microscopy Techniques
    
138
    6.3.1 Operation Principle of The IR Microscope   138
    6.3.2 IR Microscopy Measurement Results   140
  6.4 Finite Element Analysis of Heat Transfer In The GaAs MESFET      142
    6.4.1 General Mathematical Assumptions and Model   142
    6.4.2 Simulation Results and Comparison with Measurements   143
  6.5 Summary and Conclusions      146
7 Temperature Effects of Heterostructure Transistors and Circuits       151
  7.1 Introduction      151
  7.2 Physical Properties of AlGaAs/GaAs HFET     152
    7.2.1 AlGaAs/GaAs HFET Device Structures    152
    7.2.2 Principles of HFET Operation   153
    7.2.3 Modulation Doping    154
  7.3 Aim-Spice HFET Model      155
    7.3.1 HFET Model for Aim-Spice Input File    156
    7.3.2 Current-Voltage Model Used By Aim-Spice    156
  7.4 Current-Voltage Characteristics of AlGaAs/GaAs Hfet      159
    7.4.1 Intrinsic Current-Voltage Characteristics    159
    7.4.2 Extrinsic Current-Voltage Characteristics    161
  7.5 Temperature Dependent Characteristics of HFET     164
    7.5.1 Energy Gap And Intrinsic Carrier Concentration    164
    7.5.2 Threshold Voltage and Dielectric Permittivity   168
    7.5.3 Saturation Velocity and Electron Mobility   169
    7.5.4 Temperature Dependence of Current-Voltage Characteristics   174
References        179
8 High Temperature Behavior of The HFET Inverter       181
  8.1 Introduction      181
  8.2 Inverter Circuits     181
    8.2.1 Basic Inverter   181
    8.2.2 Direct-Coupled Fet Logic (DCFL) Inverter   183
    8.2.3 Buffered Fet Logic (BFL) Inverter    183
  8.3 Failure Mechanisms of AlGaAs/GaAs HFET at Elevated Temperatures      185
    8.3.1 Interdiffusion    185
  8.4 Kink Effect      190
  8.5 Ohmic Contact Resistance Increase     191
  8.6 Thermal Runaway Effect     192
  8.7 Gate Degradation     192
  8.8 Conclusions      193
References        197
9 Elevated Temperature Power Semiconductor Devices        199
  9.1 Introduction      199
  9.2 Power Semiconductor Device Materials      200
  9.3 Power Semiconductor Device Reliability     201
    9.3.1 Device Failure Modes at Elevated Temperatures    202
  9.4 Power Transistor Packaging      204
    9.4.1 Materials for Power Transistor Packaging   205
  9.5 Power Package Failure Modes and Reliability     209
    9.5.1 Thermomechanical Stress    209
    9.5.2 Moisture Related Failure Mechanisms    211
    9.5.3 Thermal Fatigue   211
  9.6 Heat Dissipation In Power Transistors     212
  9.7 Power Dissipation In Power Transistors      213
    9.7.1 Thermal Management   213
  9.8 Simulation of Elevated Temperature Effects     213
    9.8.1 Process Simulation    214
    9.8.2 Numerical Device Simulation    215
    9.8.3 Device Simulation    215
    9.8.4 Package Simulation    217
  9.9 Tests and Measurements     217
    9.9.1 Electrothermal Models For Measurement of Power Device
Parameters   
218
    9.9.2 Thermal Impedance Measurements    219
References        221
10 Design Optimization of High Temperature Electronic Packaging        225
  10.1 Introduction      225
  10.2 Design Constraints Imposed by Temperatures      226
    10.2.1 Die Information    226
    10.2.2 Mounting Platform Technology Information    227
  10.3 High Temperature Packaging Design Goals     227
    10.3.1 Performance    227
    10.3.2 Reliability    228
  10.4 Applying The High Temperature Design Guidelines     228
    10.4.1 Die to Lead Interconnect    230
    10.4.2 Lead   231
    10.4.3 Case    231
    10.4.4 Die and Substrate Attach   233
    10.4.5 Lead Seals    233
    10.4.6 Lid and Lid Seal    233
  10.5 High Temperature Electronic Package      234
11 Introduction to The High Temperature Reliability Issues of MMICs       245
  11.1 Background      245
  11.2 State-Of-The-Art of MMIC High Temperature Behavior      247
  11.3 Chapter Outline      249
References        253
12 MMICs and Monte Carlo Technique        257
  12.1 Monolithic Microwave Integrated Circuits for High Temperatures      257
    12.1.1 MMIC Status    257
    12.1.2 MMIC Performance    258
    12.1.3 MMIC Applications   259
  12.2 Monte Carlo Techniques for Design and High Temperature Prediction      260
    12.2.1 Introduction to Monte Carlo Methods   260
    12.2.2 High Temperature Reliability Simulations by Monte Carlo
Techniques  
262
References        265
13 MMIC High Temperature Reliability       269
  13.1 Introduction      269
  13.2 MMIC High Temperature Reliability Mathematics      271
  13.3 Investigations of MMIC Reliability     277
  13.4 Concerns of High Temperature MMIC Reliability     279
References        283
14 MMIC High Temperature Testing Methodology and Analysis        287
  14.1 Introduction to Arrhenius Model     287
  14.2 Accelerated Life Tests      291
    14.2.1 Introduction    291
References        295
15 MMIC Circuit High Temperature Analysis       297
  15.1 MMIC Circuit Modeling for High Temperature Design      297
    15.1.1 Introduction    297
    15.1.2 Operation Principles of MESFET    298
    15.1.3 Theoretical I-V Characteristics of GaAs MESFET    302
    15.1.4 GaAs MESFET Spice3 Model   305
  15.2 MMIC Spice Circuit Analysis      311
    15.2.1 Spice Analysis For MMICs   311
      15.2.1.1 Transimpedance Amplifier (TIA) 311
      15.2.1.2 EG-6101 Low-Noise Amplifier 314
  15.3 The Methodology to Determine the Correlation Matrix of MMICs     314
    15.3.1 Introduction to Correlation Mathematics   314
    15.3.2 Statistical Model for the Correlation between MMIC Devices    316
    15.3.3 The Methodology to Estimate the Correlation of MMICs   318
References        321
16 Monte Carlo High Temperature Reliability Model for MMICs        325
  16.1 Introduction      325
  16.2 The Methodology to Estimate MMIC High Temperature Performance     325
    16.2.1 The Joint Probability Method Via Monte Carlo Simulation    325
    16.2.2 The Non-Markovian Method Via Monte Carlo Simulation    327
    16.2.3 The MMIC Monte Carlo Technique   328
  16.3 MMIC Circuit Reliability Model     328
    16.3.1 The Given Conditions For MMIC Reliability Model   328
    16.3.2 Procedures to Model MMIC Reliability   331
    16.3.3 Validation of MMIC High Temperature Model    338
      16.3.3.1 EG-6101 LNA and TIA High Temperature Analysis 338
      16.3.3.2 EG-6010 LNA and EG-6203 Power Amplifier Reliability
Analysis
341
      16.3.3.3 Simulation Results 341
References        345
  A1 Software and Manual, User’s Guide      347
  A1-1 Introduction      347
  A1-2 How to Run Device2      347
    A1-2-1 Detailed Description for F1   348
  A1-3 Detailed Description for Function Key 2      349
  A1-4 Description for F3      351
  A1-5 Description for F4     352
  A1-6 Description for F5 and F6      354
  A1-7 Description for F7     355
  A1-8 Description for F8     356
A2 Program for Calculation of The Current-Voltage Characteristics of The HFET        357
B Program for Calculation of The Temperature Dependent Characteristicsof The HFET       359
  B-1 For Calculation of The Temperature Dependence of Energy Gap for GaAs      359
  B-2 For Calculation of The Temperature Dependence of Intrinsic Carrier
Concentration of GaAs    
360
  B-3 For Calculation of The Temperature Dependence of Saturation Velocity     361
  B-4 For Calculation of The Temperature Dependence of Electron Mobility at
Three Different Concentration     
362
  B-5 For Calculation of The Temperature Dependence of Current-Voltage
Characteristics     
364
  B-6 For Calculation of The Temperature Dependence of Drain-To-Source
Saturation Current     
367
  B-7 For Calculation of The Temperature Dependence of Extrinsic Drain Saturation
Voltage     
369
C Aim-Spice Simulation Circuits and Input Files        371
  C-1 Simulation Circuit For Current-Voltage Characteristics     371
  C-2 Input File for I-V Characteristics (Ids Versus Vds) (for Vg = 0.3v only)     371
  C-3 Input File for I-V Characteristics (Ids Versus Vg) (for Vdd = 1v only)      371
  C-4 Direct-Coupled FET Logic (DCFL) Inverter Circuit     372
  C-5 Input File for Direct-Coupled Fet Logic (DCFL) Inverter      372
  C-6 Buffered FET Logic (BFL) Inverter Circuit      373
  C-7 Input File for Buffered FET Logic (BFL) Inverter      373

You may also be interested in…